タグ「並び」の検索結果

1ページ目:全5問中1問~10問を表示)
宮崎大学 国立 宮崎大学 2014年 第5問
白球$6$個と黒球$4$個がある.はじめに,白球$6$個を横$1$列に並べる.次に,

$1$から$6$の目がそれぞれ$\displaystyle \frac{1}{6}$の確率で出るサイコロを$1$つ投げて,出た目の数が$a$であれば,並んでいる球の左から$a$番目の球の左に黒球を$1$個入れる

という操作を$4$回繰り返す.例えば,

$1$回目に$1$の目,$2$回目に$5$の目,$3$回目に$5$の目,$4$回目に$2$の目

が出た場合の球の並びの変化は下の図のようになる.
(図は省略)
最終的な$10$個の球の並びにおいて,一番左にある白球よりも左にある黒球の個数を$k$とするとき,次の各問に答えよ.

(1)$k=0$である確率を求めよ.
(2)$k=1$である確率を求めよ.
(3)$k$の期待値を求めよ.
中京大学 私立 中京大学 2014年 第2問
$\mathrm{Y}$,$\mathrm{A}$,$\mathrm{G}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{O}$,$\mathrm{Y}$,$\mathrm{O}$,$\mathrm{T}$,$\mathrm{A}$の$12$文字全部を横$1$列に並べて順列をつくるとき,次の各問に答えよ.

(1)順列の総数を求めよ.
(2)$\mathrm{GO}$という並びを含む順列の総数を求めよ.
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~キに当てはまる数または式を記入せよ.

(1)$0 \leqq \theta < \pi$の範囲で,$\cos^2 \theta+2\sqrt{3}\sin \theta \cos \theta-\sin^2 \theta$の最小値は[ア]であり,そのときの$\theta$の値は[イ]である.
(2)$\displaystyle \frac{a^x-a^{-x}}{2}=1$のとき,$x=\log_a y$と表せば,$y=[ウ]$である.ただし,$a>0$,$a \neq 1$とする.
(3)さいころを$3$回投げ,出た目を順に,百の位,十の位,一の位にして$3$桁の自然数をつくる.このとき,この自然数が$6$で割り切れ,さらに桁の並びを逆にしても$6$で割り切れる確率は[エ]である.
(4)最高次の係数が$1$の整式$P(x)$で,条件$P(2)=0,\ P(0)=1,\ P(1)=2$をみたすもののうち,最も次数の低いものは$P(x)=[オ]$である.
(5)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(6,\ 2)$を頂点とする三角形$\mathrm{OAB}$の外心の座標は$([カ],\ [キ])$である.
茨城大学 国立 茨城大学 2011年 第2問
水戸黄門,助さん、格さん.弥七,お銀,八兵衛の6人が左から右へこの順番で1列に並んで座っている.6人が席を入れ換える.どの並びかたも同様の確からしさで起こるものとする.このとき以下となる確率を求めよ.

(1)助さんと格さんが両端に座る.
(2)水戸黄門とお銀が隣どうしに座る.
(3)最初と同じ席に座る人がちょうど 3 人.
(4)最初と同じ席に座る人がいない.
スポンサーリンク

「並び」とは・・・

 まだこのタグの説明は執筆されていません。