タグ「不等式」の検索結果

54ページ目:全633問中531問~540問を表示)
帯広畜産大学 国立 帯広畜産大学 2011年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,$\{b_n\}$は初項$b$,公比$r$の等比数列である.数列$\{a_n\}$の一般項を$a_n$で表し,その初項から第$n$項までの和を$S_a$とする.また,数列$\{b_n\}$の一般項を$b_n$で表し,その初項から第$n$項までの和を$S_b$とする.次の各問に解答しなさい.

(1)$d=2a,\ a \neq 0$とする.

(i) $d$と$n$を用いて$a_n$を表しなさい.また,$a$と$n$を用いて$S_a$を表しなさい.
(ii) 不等式$6a_n<a_{n+1}+27d$および$2a_n>a_{n+1}$を満たすすべての$n$の値を求めなさい.

(2)$r=2b+1,\ b \neq 0$とする.

(i) $b$と$n$を用いて$b_n$を表しなさい.また,$r$と$n$を用いて$S_b$を表しなさい.
(ii) $\displaystyle \log_2 b_n > \log_2 b_{n+1}+\frac{1}{2}$であるとき,$r$の値の範囲を求めなさい.

(3)$A$と$B$はいずれも$2 \times 2$行列であり,それぞれ$A=\left( \begin{array}{cc}
d & 2d-1 \\
1 & d
\end{array} \right),\ B=A^2$と定義される.また,行列$B$の$(1,\ 1)$成分を$g$とし,行列$A$が与えられたときの$a$と$b$の関係は次の連立1次方程式を満たすものとする.
\[ A \left( \begin{array}{c}
a \\
b
\end{array} \right)=\left( \begin{array}{c}
-9 \\
1
\end{array} \right) \]

(i) $d$を用いて$g$を表しなさい.また,$g$が最小値をとるときの$d$の値を求めなさい.
(ii) $g$が最小値をとるとき,$A$の逆行列$A^{-1}$を求め,さらに$a$と$b$の値を求めなさい.また,$r \neq 1,\ r>0,\ n=3$および$S_a=2S_b$であるとき,$S_a$と$r$の値を求めなさい.
山形大学 国立 山形大学 2011年 第2問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問に答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
山形大学 国立 山形大学 2011年 第2問
袋の中に5個の玉が入っている.それらは,0と書かれた玉が2個,1と書かれた玉,$-1$と書かれた玉,2と書かれた玉がそれぞれ1個ずつである.この袋の中から3個の玉を取り出す.取り出した3個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った2個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,2次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問に答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
新潟大学 国立 新潟大学 2011年 第4問
$a,\ b,\ c,\ d$を正の実数とする.このとき,次の問いに答えよ.

(1)不等式$\displaystyle \sqrt{ab} \leqq \frac{a+b}{2}$を示せ.
(2)不等式$\displaystyle \sqrt[4]{abcd} \leqq \frac{a+b+c+d}{4}$を示せ.
(3)不等式$\displaystyle \sqrt[4]{ab^3} \leqq \frac{a+3b}{4}$を示せ.
宮崎大学 国立 宮崎大学 2011年 第4問
次の各問に答えよ.

(1)方程式$(\sqrt{2}+1)^x+(\sqrt{2}-1)^x=6$について,(A),(B)に答えよ.

\mon[(A)] $(\sqrt{2}+1)^x=\alpha,\ (\sqrt{2}-1)^x=\beta$とするとき,$\alpha\beta$の値を求めよ.
\mon[(B)] 方程式の解のうち最大のものを$m$とするとき,$m$の値を求めよ.

(2)$t>4$を満たすすべての$t$について,不等式
\[ (\log_2 t)^2-b \log_2 t+2>0 \]
が成り立つ$b$の範囲を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第1問
次の各問いに答えよ.

(1)$0<a<1$とする.次の不等式を解け.
\[ \log_a(2x-1)+\log_a(x-1) \leqq 0 \]
(2)$(2x-y+z)^8$の展開式における$x^2y^3z^3$の係数を求めよ.
(3)三角形の$3$辺の長さ$a,\ b,\ c$の比が$a:b:c=7:6:5$であり,面積が$12\sqrt{6}$のとき,$a$の値を求めよ.
(4)$m$と$n$を正の整数とする.$n$を$m$で割ると$7$余り,$n+13$は$m$で割り切れるとき,$m$の値をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第1問
次の各問いに答えよ.

(1)$0<a<1$とする.次の不等式を解け.
\[ \log_a(2x-1)+\log_a(x-1) \leqq 0 \]
(2)$(2x-y+z)^8$の展開式における$x^2y^3z^3$の係数を求めよ.
(3)三角形の$3$辺の長さ$a,\ b,\ c$の比が$a:b:c=7:6:5$であり,面積が$12\sqrt{6}$のとき,$a$の値を求めよ.
(4)$m$と$n$を正の整数とする.$n$を$m$で割ると$7$余り,$n+13$は$m$で割り切れるとき,$m$の値をすべて求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第1問
次の各問いに答えよ.

(1)$0<a<1$とする.次の不等式を解け.
\[ \log_a(2x-1)+\log_a(x-1) \leqq 0 \]
(2)$(2x-y+z)^8$の展開式における$x^2y^3z^3$の係数を求めよ.
(3)三角形の$3$辺の長さ$a,\ b,\ c$の比が$a:b:c=7:6:5$であり,面積が$12\sqrt{6}$のとき,$a$の値を求めよ.
(4)$m$と$n$を正の整数とする.$n$を$m$で割ると$7$余り,$n+13$は$m$で割り切れるとき,$m$の値をすべて求めよ.
宮崎大学 国立 宮崎大学 2011年 第5問
方程式$\tan x=x$について,次の各問に答えよ.ただし,必要であれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たす$x$について,不等式$\sin x <x < \tan x$が成り立つことを用いてもよい.

(1)各自然数$n$について,$\displaystyle n\pi-\frac{\pi}{2}<x<n\pi+\frac{\pi}{2}$の範囲に方程式$\tan x=x$の解がただ1つ存在することを示せ.
(2)各自然数$n$について,(1)で存在が示された解を$x_n$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}n \left( n\pi+\frac{\pi}{2}-x_n \right)$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第5問
次の各問に答えよ.

(1)方程式$(\sqrt{2}+1)^x+(\sqrt{2}-1)^x=6$について,(A),(B)に答えよ.

\mon[(A)] $(\sqrt{2}+1)^x=\alpha,\ (\sqrt{2}-1)^x=\beta$とするとき,$\alpha\beta$の値を求めよ.
\mon[(B)] 方程式の解のうち最大のものを$m$とするとき,$m$の値を求めよ.

(2)$t>0$を満たすすべての$t$について,不等式
\[ (\log_2t)^2-b \log_2t+2>0 \]
が成り立つ$b$の範囲を求めよ.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。