タグ「不等式」の検索結果

26ページ目:全633問中251問~260問を表示)
早稲田大学 私立 早稲田大学 2014年 第4問
不等式
\[ \left\{ \begin{array}{l}
\displaystyle\frac{x^2}{4}-\frac{y^2}{9} \geqq 1 \\
-3 \leqq x \leqq 3 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$x$軸のまわりに$1$回転してできる回転体の体積は$\displaystyle \frac{[サ]}{[シ]} \pi$である.
神奈川大学 私立 神奈川大学 2014年 第2問
$x$の$2$次方程式$x^2+ax+b=0$について,以下の問いに答えよ.

(1)この方程式が異なる$2$つの実数解をもたない条件を$a,\ b$の不等式で表せ.
(2)$(1)$の不等式を満たす点$(a,\ b)$の領域を図示せよ.
(3)$a,\ b$が$(1)$の不等式を満たすとき,$a+b$の最小値と,その最小値を与える$a,\ b$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$0 \leqq x \leqq 8$とする.

(1)不等式
\[ \sin \left( \frac{\pi}{12}x \right)+\cos \left( \frac{\pi}{12}x \right) \leqq \frac{\sqrt{6}}{2} \]
を満たす$x$の範囲は
\[ 0 \leqq x \leqq [ア] \quad \text{および} \quad [イ] \leqq x \leqq 8 \cdots\cdots (*) \]
である.
(2)$x$が$(*)$の範囲を動くとき,関数
\[ f(x)=|x(x-5)(x-8)| \]
は$x=[ウ]$のとき最大値$[エ]$をとる.
京都女子大学 私立 京都女子大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle a=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}},\ b=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}$のとき,$a^2+4ab+b^2$および$a^3+2a^2b+2ab^2+b^3$の値を求めよ.
(2)不等式$3-2x \leqq |3x-2|<10+x$を解け.
(3)数直線上の集合$A=\{x | -a-1<x<a^2\},\ B=\{x | -2 \leqq x \leqq 3\}$において,$A \subset B$となるような$a$の値の範囲を求めよ.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$1$次不等式$\displaystyle \frac{7+4x}{3} \geqq \frac{x+1}{2}-x$の解は$[$1$]$である.
(2)$\displaystyle \frac{1}{2+\sqrt{3}-\sqrt{5}}$の分母を有理化すると$[$2$]$となる.
(3)$A,\ B,\ C$を定数とする.$\displaystyle \frac{x^2+2x+17}{x^3-x^2-5x-3}=\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-3}$が$x$についての恒等式であるとき,$A=[$3$]$,$B=[$4$]$,$C=[$5$]$である.
(4)実数$a$に対して,$a$以下の整数で最大のものを$[a]$で表す.このとき,$[\log_2 7]=[$6$]$,$\displaystyle [\log_3 \frac{1}{25}]=[$7$]$である.
(5)大小$2$個のさいころを同時に投げる.このとき,目の和が$9$以下になる確率は$[$8$]$であり,目の積が$9$以下になる確率は$[$9$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とし,頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろすとする.このとき,線分$\mathrm{AH}$の長さは$[$10$]$であり,$\triangle \mathrm{ABC}$の面積は$[$11$]$である.
早稲田大学 私立 早稲田大学 2014年 第3問
連立不等式
\[ \left\{ \begin{array}{l}
y \leqq - \ {\left( \log_{\frac{1}{3}} x \right)}^2+\displaystyle\frac{4}{\log_x 3} \quad \cdots (*) \\
y \geqq \log_3 x \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$D$とする.

(1)$\log_3 x=t$とおくとき,不等式$(*)$を$t$と$y$で表すと,$y \leqq [サ]t^2+[シ]t$となる.
(2)領域$D$において,$y$のとりうる値の範囲を表す不等式は,次の$①$から$④$の中の$[ス]$の形であり,$a=[セ]$,$b=[ソ]$である.ただし,$[ス]$は$1$から$4$の数をマークして答えること.
\[ ① a \leqq y \leqq b \qquad ② a \leqq y<b \qquad ③ a<y \leqq b \qquad ④ a<y<b \]
(3)$x,\ y$がともに整数である点$(x,\ y)$が領域$D$内を動くとき,$x-y$の最大値は$[タ]$である.
早稲田大学 私立 早稲田大学 2014年 第2問
以下の不等式$(ⅰ)$~$\tokeigo$をすべて満たす点$(x,\ y)$からなる領域を$S$とする.

$(ⅰ)$ $-x+2y \leqq 20$
$(ⅱ)$ $2x+3y \leqq 44$
$(ⅲ)$ $4x-y \leqq 32$
$\tokeishi$ $x \geqq 0$
$\tokeigo$ $y \geqq 0$

次の問いに答えよ.

(1)領域$S$において$x+3y$を最大にする点$\mathrm{A}(x,\ y)$の$x$座標は$[オ]$,$y$座標は$[カ]$である.このとき$x+3y$の最大値$M$は$[キ]$である.
(2)$a$を実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が,$(1)$で求めた点$\mathrm{A}(x,\ y)$のみの場合,$\displaystyle \frac{a}{b}$がとりうる値の範囲は
\[ [ク]<\frac{a}{b}<[ケ] \]
である.
(3)$a$を正の実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が複数あるとき,$\displaystyle \frac{a}{b}$がとりうる値は$[コ]$である.
(4)$c$を実数とし,上記の不等式$(ⅰ)$,$(ⅱ)$,$\tokeishi$,$\tokeigo$と不等式
\[ (ⅲ)^* 4x-y \leqq c \]
をすべて満たす点$(x,\ y)$からなる領域を$S^{*}$とする.領域$S^*$において$x+3y$の最大値が$(1)$で求めた$M$であるとすると,$c$がとりうる最小値は$[サ]$である.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄$[$1$]$から$[$6$]$にあてはまる数または数式を記入せよ.

(1)$3$次曲線$y=x^3-6x^2+11x-4$と直線$y=ax$が第$1$象限の相異なる$3$点で交わるような定数$a$の範囲は$[$1$]<a<[$2$]$である.
(2)硬貨を投げ,$3$回つづけて表が出たら終了する.$n$回以下で終了する場合の数を$f_n$とする.$f_{10}=[$3$]$である.
(3)不等式$\displaystyle \frac{a}{19}<\log_{10}7<\frac{b}{13}$を満たす最大の整数$a$と最小の整数$b$は$a=[$4$]$,$b=[$5$]$である.必要に応じて次の事実を用いてもよい.
\[ \begin{array}{lll}
7^1=7 & 7^2=49 & 7^3=343 \\
7^4=2401 & 7^5=16807 & 7^6=117649 \\
7^7=823543 & 7^8=5764801 & 7^9=40353607 \\
7^{10}=282475249 & 7^{11}=1977326743 & 7^{12}=13841287201 \\
7^{13}=96889010407 & 7^{14}=678223072849
\end{array} \]
(4)四面体$\mathrm{ABCD}$は,$4$つの面のどれも$3$辺の長さが$7,\ 8,\ 9$の三角形である.この四面体$\mathrm{ABCD}$の体積は$[$6$]$である.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
スポンサーリンク

「不等式」とは・・・

 まだこのタグの説明は執筆されていません。