タグ「不等号」の検索結果

96ページ目:全4604問中951問~960問を表示)
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
筑波大学 国立 筑波大学 2015年 第1問
以下の問いに答えよ.

(1)座標平面において,次の連立不等式の表す領域を図示せよ.
\[ \left\{ \begin{array}{l}
x^2+y \leqq 1 \\
x-y \leqq 1
\end{array} \right. \]
(2)$2$つの放物線$y=x^2-2x+k$と$y=-x^2+1$が共有点をもつような実数$k$の値の範囲を求めよ.
(3)$x,\ y$が$(1)$の連立不等式を満たすとき,$y-x^2+2x$の最大値および最小値と,それらを与える$x,\ y$の値を求めよ.
筑波大学 国立 筑波大学 2015年 第2問
半径$1$の円を内接円とする三角形$\mathrm{ABC}$が,辺$\mathrm{AB}$と辺$\mathrm{AC}$の長さが等しい二等辺三角形であるとする.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$と内接円の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.また,$\alpha=\angle \mathrm{CAB}$,$\beta=\angle \mathrm{ABC}$とし,三角形$\mathrm{ABC}$の面積を$S$とする.

(1)線分$\mathrm{AQ}$の長さを$\alpha$を用いて表し,線分$\mathrm{QC}$の長さを$\beta$を用いて表せ.
(2)$\displaystyle t=\tan \frac{\beta}{2}$とおく.このとき,$S$を$t$を用いて表せ.
(3)不等式$S \geqq 3 \sqrt{3}$が成り立つことを示せ.さらに,等号が成立するのは,三角形$\mathrm{ABC}$が正三角形のときに限ることを示せ.
筑波大学 国立 筑波大学 2015年 第3問
$p$と$q$は正の整数とする.$2$次方程式$x^2-2px-q=0$の$2$つの実数解を$\alpha,\ \beta$とする.ただし$\alpha>\beta$とする.数列$\{a_n\}$を
\[ a_n=\frac{1}{2}(\alpha^{n-1}+\beta^{n-1}) \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.ただし$\alpha^0=1$,$\beta^0=1$と定める.

(1)すべての自然数$n$に対して,$a_{n+2}=2pa_{n+1}+qa_n$であることを示せ.
(2)すべての自然数$n$に対して,$a_n$は整数であることを示せ.
(3)自然数$n$に対し,$\displaystyle \frac{\alpha^{n-1}}{2}$以下の最大の整数を$b_n$とする.$p$と$q$が$q<2p+1$を満たすとき,$b_n$を$a_n$を用いて表せ.
筑波大学 国立 筑波大学 2015年 第4問
$f(x)=\log (e^x+e^{-x})$とおく.曲線$y=f(x)$の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と$y$軸の交点の$y$座標を$b(t)$とおく.

(1)次の等式を示せ.
\[ b(t)=\frac{2te^{-t}}{e^t+e^{-t}}+\log (1+e^{-2t}) \]
(2)$x \geqq 0$のとき,$\log (1+x) \leqq x$であることを示せ.
(3)$t \geqq 0$のとき,
\[ b(t) \leqq \frac{2}{e^t+e^{-t}}+e^{-2t} \]
であることを示せ.
(4)$\displaystyle b(0)=\lim_{x \to \infty} \int_0^x \frac{4t}{(e^t+e^{-t})^2} \, dt$であることを示せ.
筑波大学 国立 筑波大学 2015年 第5問
$f(x),\ g(x),\ h(x)$を

$\displaystyle f(x)=\frac{1}{2}(\cos x-\sin x)$

$\displaystyle g(x)=\frac{1}{\sqrt{2}} \sin \left( x+\frac{\pi}{4} \right)$

$h(x)=\sin x$

とおく.$3$つの曲線$y=f(x)$,$y=g(x)$,$y=h(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$を満たす部分を,それぞれ$C_1$,$C_2$,$C_3$とする.

(1)$C_2$と$C_3$の交点の座標を求めよ.
(2)$C_1$と$C_3$の交点の$x$座標を$\alpha$とする.$\sin \alpha$,$\cos \alpha$の値を求めよ.
(3)$C_1$,$C_2$,$C_3$によって囲まれる図形の面積を求めよ.
福島大学 国立 福島大学 2015年 第1問
次の問いに答えなさい.

(1)次の関数の最大値および最小値を求めなさい.
\[ f(x)=|x|+|x-1|+|x-2| \quad (-1 \leqq x \leqq 3) \]
(2)$\sqrt{x}+\sqrt{y}=10$のとき,$\log_{10}x+\log_{10}y$の最大値を求めなさい.
(3)$f(\theta)=5 \sin \theta-12 \cos \theta (0 \leqq \theta \leqq 2\pi)$の最大値および最小値を求めなさい.
福島大学 国立 福島大学 2015年 第2問
$3$点$\mathrm{A}(1,\ 4)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(-2,\ 7)$を通る$2$次関数$y=f(x)$上に点$\mathrm{P}(p,\ f(p))$がある.ただし,$-2<p \leqq -1$とする.このとき,次の問いに答えなさい.

(1)$f(x)$を求めなさい.
(2)三角形$\mathrm{ACP}$の面積を$p$の式で表しなさい.
(3)三角形$\mathrm{ACP}$の面積が最大となる点$\mathrm{P}$の座標を求めなさい.
福島大学 国立 福島大学 2015年 第3問
第$n$項が
\[ a_n=\frac{1}{n} \cdot \frac{1}{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表される数列$\{a_n\}$がある.この数列の第$1$項から第$n$項までの和を$S_n$で表すとき,次の問いに答えなさい.

(1)$n \geqq 2$のとき,$S_n$を$n$の式で表しなさい.また,$S_{10}$の値を求めなさい.
(2)$\displaystyle S=2 \sum_{k=8}^{70} a_k$の値を求めなさい.
浜松医科大学 国立 浜松医科大学 2015年 第3問
$t$は実数で$\displaystyle 0<t<\frac{\pi}{2}$を満たすとする.平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 0)$,$\mathrm{P}(\cos t,\ \sin t)$,$\mathrm{Q}(1,\ \sin t)$をとる.このとき以下の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線を$\ell$,点$\mathrm{O}$と点$\mathrm{Q}$を通る直線を$m$とする.このとき$\ell,\ m$の交点$\mathrm{R}$の座標を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲全体を動くときに点$\mathrm{R}$が描く曲線を$C$とする.このとき,点$(x,\ y) (x>0,\ y>0)$が$C$上にあるための条件を$x,\ y$の式で表せ.
(3)曲線$C$の点$\mathrm{R}$における接線を$n$とする.ある$t$に対して直線$\ell,\ m$がなす鋭角と直線$m,\ n$がなす鋭角が等しくなる.この状況のもとで,以下の問いに答えよ.

(i) 点$\mathrm{P}(\cos t,\ \sin t)$の座標を求めよ.
(ii) 直線$\ell$と$n$のなす鋭角を$\theta$とおく.また,点$\mathrm{O}$を中心とし半径が$1$の円と直線$n$との$2$交点のうち,$y$座標が正の点を$\mathrm{S}(\cos \phi,\ \sin \phi)$とおく.このとき,$\theta=\phi$を示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。