タグ「不等号」の検索結果

90ページ目:全4604問中891問~900問を表示)
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の放物線$\displaystyle y=x^2-\frac{1}{2}ax+2$を$C$とする.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$の$x$座標が$a$であるとき,次の問に答えよ.ただし,$a>0$とする.

(1)点$\mathrm{P}$における放物線$C$の接線$\ell_1$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,直線$\ell_1$に垂直な直線$\ell_2$の方程式を求めよ.
(3)放物線$C$と直線$\ell_2$の交点で,点$\mathrm{P}$と異なる点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$の座標を求めよ.
(4)放物線$C$と直線$\ell_2$で囲まれた図形の面積$S(a)$を求めよ.
(5)面積$S(a)$の最小値と,そのときの$a$の値を求めよ.
山形大学 国立 山形大学 2015年 第2問
関数$f(x)=x^3+a_1x^2+a_2x+a_3$について,次の問に答えよ.ただし,$a_1$,$a_2$,$a_3$は負の実数とする.

(1)$f^\prime(x)=0$は正の実数解と負の実数解を$1$つずつもつことを示せ.
$f^\prime(x)=0$の正の実数解を$\alpha$,負の実数解を$\beta$とおくとき,$-\alpha<\beta$を示せ.
(2)$f(x)=0$の正の実数解は,ただ$1$つであることを示せ.
(3)$f(x)+f(-x)<0$を示せ.
(4)$f(x)=0$の正の実数解を$p$とおく.$x \leqq -p$のとき,$f(x)<0$を示せ.
大阪教育大学 国立 大阪教育大学 2015年 第3問
$a,\ b$は$0<a<b$を満たす定数とし,関数$y=\log x$のグラフを$G$とする.点$\mathrm{C}$が曲線$G$上を点$\mathrm{A}(a,\ \log a)$から点$\mathrm{B}(b,\ \log b)$まで動くとき,点$\mathrm{C}$から$x$軸への垂線と線分$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{CP}$の長さの最大値を$L$とする.このとき,以下の問に答えよ.ただし,$\log x$は自然対数を表すものとする.

(1)不等式$\displaystyle a<\frac{b-a}{\log b-\log a}<b$が成り立つことを証明せよ.
(2)$\displaystyle h=\frac{b}{a}$とおくとき,$L$を$h$を用いて表せ.
(3)実数$p,\ q,\ r$が$a<p<b$,$a<q<b$,$a<r<b$を満たすとき,不等式
\[ \frac{p+q+r}{3}<e^L \sqrt[3]{pqr} \]
が成り立つことを証明せよ.ただし,$e$は自然対数の底とする.
山形大学 国立 山形大学 2015年 第1問
二つの放物線

$C_1:y=x^2$
$\displaystyle C_2:y=\frac{1}{2}(x-a)^2+b$

がある.ただし,$a,\ b$は実数であり,$b>0$とする.以下の問いに答えよ.

(1)放物線$C_1$上の点$\mathrm{P}(p,\ p^2)$における接線$\ell$の方程式を求めよ.
(2)接線$\ell$が$C_2$にも接する場合の$p$を$a$と$b$を用いて表せ.
(3)$(2)$より$C_1,\ C_2$の両方に接する直線が$2$本存在することがわかる.この二つの直線の交点$\mathrm{Q}$の座標を$a$と$b$を用いて表せ.
(4)放物線$C_2$の頂点が曲線$y=e^{-2x^2}$上を動くとき,交点$\mathrm{Q}$の軌跡を$y=f(x)$で表す.関数$f(x)$を求めよ.また$f(x)$の増減と凹凸を調べ軌跡の概形をかけ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第2問
関数$f(x)=x^3+a_1x^2+a_2x+a_3$について,次の問に答えよ.ただし,$a_1$,$a_2$,$a_3$は負の実数とする.

(1)$f^\prime(x)=0$は正の実数解と負の実数解を$1$つずつもつことを示せ.
$f^\prime(x)=0$の正の実数解を$\alpha$,負の実数解を$\beta$とおくとき,$-\alpha<\beta$を示せ.
(2)$f(x)=0$の正の実数解は,ただ$1$つであることを示せ.
(3)$f(x)+f(-x)<0$を示せ.
(4)$f(x)=0$の正の実数解を$p$とおく.$x \leqq -p$のとき,$f(x)<0$を示せ.
(5)$b_1,\ b_2,\ b_3,\ b_4$を負の実数とする.関数$g(x)=x^4+b_1x^3+b_2x^2+b_3x+b_4$に対し,$g(x)=0$の正の実数解は,ただ$1$つであることを示せ.$x<0$のとき,$g(x)-g(-x)>0$を示せ.$g(x)=0$の正の実数解を$q$とおく.$x \leqq -q$のとき,$g(x)>0$を示せ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(a,\ e^a)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.ただし,$a>1$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)図形$D$の面積$S$を$a$を用いて表せ.
(3)定積分$\displaystyle \int_{e^b}^{e^a} (\log y)^2 \, dy$を$a$を用いて表せ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を$a$を用いて表せ.
(5)$\displaystyle \lim_{a \to \infty} \frac{V}{ae^a}$と$\displaystyle \lim_{a \to \infty} \frac{V}{aS}$を求めよ.
山形大学 国立 山形大学 2015年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_1^3 (x-1)(x-2)(x-3) \, dx$を求めよ.
(2)方程式$|x^2-3|=2x$を解け.
(3)$a$を$1$でない自然数とする.不等式$(\log_a x)^2-\log_a x^3+2<0$を満たす自然数$x$が$1$つだけ存在するとき,$a$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。