タグ「不等号」の検索結果

80ページ目:全4604問中791問~800問を表示)
室蘭工業大学 国立 室蘭工業大学 2015年 第3問
$a$を定数とし,$\displaystyle 0<a<\frac{\pi}{2}$とする.媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\cos^3 t \\
y=\sin^3 t \phantom{2^{\mkakko{}}} \!\!\!\!\!\!\!\!\!\!
\end{array} \right. \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表される曲線を$C$とする.また,$C$の$0 \leqq t \leqq a$の部分の長さを$L$とする.

(1)$L$を$a$を用いて表せ.ただし,$L$は$\displaystyle L=\int_0^a \sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$と表される.
(2)曲線$C$上の点$\mathrm{P}(\cos^3 a,\ \sin^3 a)$における接線$\ell$の方程式を求めよ.また,$\ell$と$x$軸の交点$\mathrm{Q}$の座標を求めよ.
(3)$(2)$の$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離を$M$とするとき,$\displaystyle L=\frac{3}{2}M$が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第3問
$a$を定数,$e$を自然対数の底とし,$\displaystyle f(x)=(a-x^2)e^{-\frac{x^2}{2}}$とおく.

(1)$x>0$のとき,不等式$\displaystyle e^x>1+x+\frac{x^2}{2}$が成り立つことを証明せよ.これを用いて$\displaystyle \lim_{x \to \infty}f(x)=0$を示せ.
(2)関数$f(x)$が$-1<x<2$においてちょうど$2$個の極値をもつように,定数$a$の値の範囲を定めよ.
(3)$a$は$(2)$で定めた範囲にあるとする.区間$(-\infty,\ \infty)$における$f(x)$の最大値と最小値を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
次の問いに答えよ.

(1)数列$\{a_n\}$の一般項が$\displaystyle a_n=\frac{3}{2} \cdot {(-1)}^n+\frac{5}{2}$で与えられるとき,無限級数$\displaystyle \sum_{n=1}^\infty \frac{a_n}{7^n}$の和を求めよ.
(2)すべての自然数$n$に対して$b_n$は$0 \leqq b_n \leqq 6$を満たす整数で,$\displaystyle \sum_{n=1}^\infty \frac{b_n}{7^n}=\frac{3}{8}$が成り立つ.このとき$b_1,\ b_2,\ b_3$を求め,さらに数列$\{b_n\}$の一般項を求めよ.
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第2問
$1$から$n$までの番号が$1$つずつ書かれている$n$個の球が,袋の中に入っている.この袋の中から$3$個の球を同時に取り出す.このとき,以下の問いに答えよ.ただし,$n \geqq 3$とする.

(1)$n=5$のとき,球に書かれている$3$つの数のうち,$2$つだけが連続している確率を求めよ.
(2)球に書かれている$3$つの数のうち,$2$つだけが連続している確率$p(n)$を求めよ.
(3)球に書かれている$3$つの数のうち,どの$2$つも連続していない確率$q(n)$を求めよ.
(4)$p(n)$の最大値と,そのときの$n$の値を求めよ.
福井大学 国立 福井大学 2015年 第3問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第1問
$1$から$n$までの番号が$1$つずつ書かれている$n$個の球が,袋の中に入っている.この袋の中から$3$個の球を同時に取り出す.このとき,以下の問いに答えよ.ただし,$n \geqq 3$とする.

(1)$n=5$のとき,球に書かれている$3$つの数のうち,$2$つだけが連続している確率を求めよ.
(2)球に書かれている$3$つの数のうち,$2$つだけが連続している確率$p(n)$を求めよ.
(3)球に書かれている$3$つの数のうち,どの$2$つも連続していない確率$q(n)$を求めよ.
(4)$p(n)$の最大値と,そのときの$n$の値を求めよ.
福井大学 国立 福井大学 2015年 第3問
正の整数$n$について,$\sqrt{2n-1}$以下の最大の整数を$a_n$と定める.このとき,以下の問いに答えよ.

(1)$a_{100}$の値を求めよ.また,$a_n=a_{100}$となる$n$はいくつあるか求めよ.
(2)正の整数$m$に対して,$a_n=m$となる$n$はいくつあるか求めよ.
(3)数列$\{a_n\}$の初項から第$100$項までの和を求めよ.
(4)$\displaystyle T_n=\sum_{k=1}^n \frac{1}{a_k}$とする.$T_{12}$の値を求めよ.また,$T_n>10$をみたす最小の$n$を求めよ.
福井大学 国立 福井大学 2015年 第4問
$a$を正の定数とし,
\[ x=a \cos \theta-\cos 2\theta,\quad y=a \sin \theta+\sin 2\theta \quad \left( 0 \leqq \theta \leqq \frac{\pi}{3} \right) \]
で表される曲線を$C$とする.曲線$C$が点$\mathrm{P}(1,\ 2)$を通るとき,以下の問いに答えよ.

(1)定数$a$の値を求めよ.
(2)点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.$\ell$の方程式を求めよ.
(3)曲線$C$と直線$x=1$および$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。