タグ「不等号」の検索結果

73ページ目:全4604問中721問~730問を表示)
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-2ax+2a^2 \]
を考える.ただし,$a>0$とする.以下の問いに答えよ.

(1)放物線$C_2$の頂点の座標を$a$を用いて表せ.
(2)$2$つの放物線$C_1$,$C_2$の共通接線を$\ell$とし,$C_1$と$\ell$との接点の$x$座標を$p$,$C_2$と$\ell$との接点の$x$座標を$q$とする.$p$と$q$の値および$\ell$の方程式を,それぞれ$a$を用いて表せ.
(3)放物線$C_1$,$C_2$および接線$\ell$によって囲まれた図形の面積を$S_1$とする.$S_1$を$a$を用いて表せ.
(4)点$\displaystyle \left( -\frac{a}{2},\ \frac{a^2}{4} \right)$における$C_1$の接線を$m$とする.このとき,$m$の方程式を$a$を用いて表せ.また,$m$と接線$\ell$との交点の$x$座標を求めよ.
(5)放物線$C_1$および接線$\ell$,$m$によって囲まれた図形の面積を$S_2$とする.$S_2$を$a$を用いて表せ.さらに,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
大分大学 国立 大分大学 2015年 第4問
曲線$C:4x^2+9y^2=36 (x>0)$上の点$\displaystyle \mathrm{P} \left( \frac{3 \sqrt{3}}{2},\ y_1 \right)$が第$1$象限にある.点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.

(1)$y_1$の値を求めなさい.
(2)接線$\ell$の方程式を求めなさい.
(3)接線$\ell$と$x$軸との交点の$x$座標を求めなさい.
(4)曲線$C$,接線$\ell$,$x$軸で囲まれた部分の面積$S$を求めなさい.
大分大学 国立 大分大学 2015年 第3問
正の実数$p_i,\ q_i (i=1,\ 2,\ \cdots,\ n)$が$\displaystyle \sum_{i=1}^n p_i=\sum_{i=1}^n q_i=1$を満たすとき,次の問いに答えなさい.

(1)不等式$\log x \leqq x-1$が成り立つことを証明しなさい.
(2)不等式$\displaystyle \sum_{i=1}^n p_i \log p_i \geqq \sum_{i=1}^n p_i \log q_i$が成り立つことを証明しなさい.
(3)$\displaystyle F=\sum_{i=1}^n p_i \log p_i$の最小値を求めなさい.
(4)正の実数$a_i (i=1,\ 2,\ \cdots,\ n)$に対して,$\displaystyle G=\sum_{i=1}^n a_i \log a_i$の最小値を求めなさい.
九州工業大学 国立 九州工業大学 2015年 第3問
$n$を$2$以上の自然数とし,関数$f(x)$を$f(x)=x^n \log x (x>0)$とする.ただし,対数は自然対数とする.次に答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x+\frac{1}{x}>0$を証明せよ.
(2)$\displaystyle \lim_{x \to +0}x^n \log x=0$を示せ.
(3)関数$f(x)$の増減を調べ,その最小値を求めよ.また,曲線$y=f(x)$の概形をかけ.ただし,曲線の凹凸は調べなくてよい.
(4)$f(x)$が最小値をとるときの$x$の値を$c_n$とし
\[ I_n=\int_{c_n}^1 f(x) \, dx \]
とする.$\displaystyle \lim_{n \to \infty} n^2I_n$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第4問
関数$\displaystyle f(x)=\frac{\sqrt{x^2-1}}{x} (x \geqq 1)$と曲線$C:y=f(x)$について,次に答えよ.

(1)区間$x>1$で,$f(x)$は増加し,曲線$C$は上に凸であることを示せ.
(2)曲線$C$の点$(\sqrt{2},\ f(\sqrt{2}))$における接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$と曲線$C$および$x$軸で囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(4)$(3)$で定めた図形$D$の面積$S$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第2問
初項$1$,公差$3$の等差数列$\{a_n\}$と,一般項が$\displaystyle b_n=\left[ \frac{2n+2}{3} \right]$で与えられる数列$\{b_n\}$がある.ここで,実数$x$に対して$[x]$は$x$を超えない最大の整数を表す.たとえば,$\displaystyle b_1=\left[ \frac{4}{3} \right]=1$,$b_2=[2]=2$,$\displaystyle b_3=\left[ \frac{8}{3} \right]=2$である.数列$\{a_n\}$を次のように,$b_1$個,$b_2$個,$b_3$個,$\cdots$の群に分け,第$k$群には$b_k$個の数が入るようにする.

$\big| \quad a_1 \quad \big| \quad a_2,\ a_3 \quad \big| \quad a_4,\ a_5 \quad \big| \quad a_6,\ \cdots$
\ 第$1$群 \quad 第$2$群 \qquad\ 第$3$群 \qquad $\cdots$

第$k$群の最初の数を$c_k$とする.次に答えよ.

(1)自然数$m$に対して,$b_{3m-2}$,$b_{3m-1}$,$b_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{b_n\}$の初項から第$3m$項までの和$S_{3m}$を求めよ.
(2)自然数$m$に対して,$c_{3m-2}$,$c_{3m-1}$,$c_{3m}$をそれぞれ$m$の多項式で表せ.また,数列 $\{c_k\}$の初項から第$3m$項までの和$T_{3m}$を求めよ.
(3)$1000$は第何群の何番目の数か.
(4)$x \geqq 1$のとき$\displaystyle \sqrt{x^2+1}<x+\frac{1}{2}$であることを用いて,次の不等式が成り立つことを示せ.ただし,$m$は自然数とする.
\[ \sum_{k=1}^{3m} (\sqrt{c_k}-k)<\frac{m}{2} \]
徳島大学 国立 徳島大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \tan \frac{x}{2}=m$とするとき,等式$\displaystyle \sin x=\frac{2m}{1+m^2},\ \cos x=\frac{1-m^2}{1+m^2}$が成り立つことを示せ.
(2)$\displaystyle -\pi<x<\frac{\pi}{2}$のとき,次の不等式が成り立つことを示せ.
\[ \sin x+\cos x \geqq \tan \frac{x}{2} \]
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。