タグ「不等号」の検索結果

68ページ目:全4604問中671問~680問を表示)
東北大学 国立 東北大学 2015年 第2問
$t>0$を実数とする.座標平面において,$3$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{P}(t,\ \sqrt{3}t)$を頂点とする三角形$\mathrm{ABP}$を考える.

(1)三角形$\mathrm{ABP}$が鋭角三角形となるような$t$の範囲を求めよ.
(2)三角形$\mathrm{ABP}$の垂心の座標を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BP}$,$\mathrm{PA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{Q}$,$\mathrm{R}$とおく.$t$が$(1)$で求めた範囲を動くとき,三角形$\mathrm{ABP}$を線分$\mathrm{MQ}$,$\mathrm{QR}$,$\mathrm{RM}$で折り曲げてできる四面体の体積の最大値と,そのときの$t$の値を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.関数$f(t)=-4t^3+(a+3)t$の$0 \leqq t \leqq 1$における最大値を$M(a)$とする.

(1)$M(a)$を求めよ.
(2)実数$x>0$に対し,$g(x)=M(x)^2$とおく.$xy$平面において,関数$y=g(x)$のグラフに点$(s,\ g(s))$で接する直線が原点を通るとき,実数$s>0$とその接線の傾きを求めよ.
(3)$a$が正の実数全体を動くとき,
\[ k=\frac{M(a)}{\sqrt{a}} \]
の最小値を求めよ.
東北大学 国立 東北大学 2015年 第6問
$k \geqq 2$と$n$を自然数とする.$n$が$k$個の連続する自然数の和であるとき,すなわち,
\[ n=m+(m+1)+\cdots +(m+k-1) \]
が成り立つような自然数$m$が存在するとき,$n$を$k$-連続和とよぶことにする.ただし,自然数とは$1$以上の整数のことである.

(1)$n$が$k$-連続和であることは,次の条件$(\mathrm{A})$,$(\mathrm{B})$の両方が成り立つことと同値であることを示せ.

$(\mathrm{A})$ $\displaystyle \frac{n}{k}-\frac{k}{2}+\frac{1}{2}$は整数である.
$(\mathrm{B})$ $2n>k^2$が成り立つ.

(2)$f$を自然数とする.$n=2^f$のとき,$n$が$k$-連続和となるような自然数$k \geqq 2$は存在しないことを示せ.
(3)$f$を自然数とし,$p$を$2$でない素数とする.$n=p^f$のとき,$n$が$k$-連続和となるような自然数$k \geqq 2$の個数を求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第1問
次の問いに答えよ.

(1)定積分
\[ \int_0^{\log 3} \frac{dx}{e^x+5e^{-x}-2} \]
を求めよ.
(2)$x>0$のとき,不等式
\[ \log x \geqq \frac{5x^2-4x-1}{2x(x+2)} \]
が成り立つことを示せ.
横浜国立大学 国立 横浜国立大学 2015年 第3問
実数$a$に対し,$xy$平面上の放物線$C:y=(x-a)^2-2a^2+1$を考える.次の問いに答えよ.

(1)$a$がすべての実数を動くとき,$C$が通過する領域を求め,図示せよ.
(2)$a$が$-1 \leqq a \leqq 1$の範囲を動くとき,$C$が通過する領域を求め,図示せよ.
横浜国立大学 国立 横浜国立大学 2015年 第5問
$1$個のさいころを$3$回続けて投げ,出た目を順に$a,\ b,\ c$とする.不等式
\[ \int_0^\pi (\cos ax)(\cos bx)(\cos cx) \, dx>0 \]
をみたす確率を求めよ.
新潟大学 国立 新潟大学 2015年 第3問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周$C$上の点を$\mathrm{A}(a,\ b)$とし,$f(x)=(x-a)^2+b$とする.点$\mathrm{B}(0,\ -2)$から放物線$y=f(x)$に引いた接線を$\ell_1$,$\ell_2$とし,接点をそれぞれ$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q))$とする.ただし$p<q$である.放物線$y=f(x)$と$2$直線$\ell_1$,$\ell_2$とで囲まれた部分の面積を$S$とする.次の問いに答えよ.

(1)接線$\ell_1$の方程式と接点$\mathrm{P}$の座標,および接線$\ell_2$の方程式と接点$\mathrm{Q}$の座標を$a,\ b$を用いて表せ.
(2)面積$S$を$b$を用いて表せ.
(3)点$\mathrm{A}$が円周$C$上を動くとき,面積$S$の最大値とそのときの点$\mathrm{A}$の座標$(a,\ b)$を求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
東京工業大学 国立 東京工業大学 2015年 第1問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{4a_n-9}{a_n-2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.また数列$\{b_n\}$を
\[ b_n=\frac{a_1+2a_2+\cdots +na_n}{1+2+\cdots +n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)すべての$n$に対して,不等式$\displaystyle b_n \leqq 3+\frac{4}{n+1}$が成り立つことを示せ.
(3)極限値$\displaystyle \lim_{n \to \infty} b_n$を求めよ.
東京工業大学 国立 東京工業大学 2015年 第3問
$a>0$とする.曲線$y=e^{-x^2}$と$x$軸,$y$軸,および直線$x=a$で囲まれた図形を,$y$軸のまわりに$1$回転してできる回転体を$A$とする.

(1)$A$の体積$V$を求めよ.
(2)点$(t,\ 0) (-a \leqq t \leqq a)$を通り$x$軸と垂直な平面による$A$の切り口の面積を$S(t)$とするとき,不等式
\[ S(t) \leqq \int_{-a}^a e^{-(s^2+t^2)} \, ds \]
を示せ.
(3)不等式
\[ \sqrt{\pi (1-e^{-a^2})} \leqq \int_{-a}^a e^{-x^2} \, dx \]
を示せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。