タグ「不等号」の検索結果

65ページ目:全4604問中641問~650問を表示)
広島大学 国立 広島大学 2015年 第2問
座標平面上の放物線
\[ C_n:y=x^2-p_nx+q_n \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.ただし,$p_n,\ q_n$は
\[ p_1^2-4q_1=4,\quad p_n^2-4q_n>0 \qquad (n=2,\ 3,\ 4,\ \cdots) \]
を満たす実数とする.$C_n$と$x$軸との二つの交点を結ぶ線分の長さを$\ell_n$とする.また,$C_n$と$x$軸で囲まれた部分の面積$S_n$は
\[ \frac{S_{n+1}}{S_n}=\left( \frac{n+2}{\sqrt{n(n+1)}} \right)^3 \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$C_n$の頂点の$y$座標を$\ell_n$を用いて表せ.
(2)数列$\{\ell_n\}$の一般項を求めよ.
(3)$p_n=n \sqrt{n} (n=1,\ 2,\ 3,\ \cdots)$であるとき,$\displaystyle \lim_{n \to \infty} n \log \left( -\frac{2q_n}{n^2} \right)$を求めよ.ただし,$\log x$は$x$の自然対数である.
神戸大学 国立 神戸大学 2015年 第3問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
神戸大学 国立 神戸大学 2015年 第5問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
広島大学 国立 広島大学 2015年 第4問
$a,\ b,\ p$は$a>0$,$b>0$,$p<0$を満たす実数とする.座標平面上の$2$曲線
\[ C_1:y=e^x,\quad C_2:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \]
を考える.ただし,$e$は自然対数の底である.$C_1$と$C_2$が点$(p,\ e^p)$を共有し,その点における$C_1$の接線と$C_2$の接線が一致するとき,次の問いに答えよ.

(1)$p$を$a$を用いて表せ.
(2)$\displaystyle \lim_{a \to \infty}(p+a)$を求めよ.
(3)$\displaystyle \lim_{a \to \infty}\frac{b^2e^{2a}}{a}$を求めよ.
広島大学 国立 広島大学 2015年 第4問
$\alpha,\ \beta$は$\alpha>0$,$\beta>0$,$\alpha+\beta<1$を満たす実数とする.三つの放物線
\[ C_1:y=x(1-x),\quad C_2:y=x(1-\beta-x),\quad C_3:y=(x-\alpha)(1-x) \]
を考える.$C_2$と$C_3$の交点の$x$座標を$\gamma$とする.また,$C_1$,$C_2$,$C_3$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\gamma$を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$\alpha,\ \beta$が$\displaystyle \alpha+\beta=\frac{1}{4}$を満たしながら動くとき,$S$の最大値を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第4問
四面体$\mathrm{OAPQ}$において,$\angle \mathrm{AOP}=\angle \mathrm{AOQ}=\angle \mathrm{POQ}={60}^\circ$,$\mathrm{OA}=1$,$\mathrm{OP}=p$,$\mathrm{OQ}=q$とし,頂点$\mathrm{A}$から平面$\mathrm{OPQ}$に下ろした垂線を$\mathrm{AH}$とする.ただし,$p \leqq q$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AQ}}$を$p,\ q$を用いて表せ.
(2)$\mathrm{AH}$の長さを求めよ.
(3)$p+q=3$,および$\triangle \mathrm{APQ}$の面積が$1$のとき,以下の値を求めよ.
\[ (1) \ pq \qquad (2) \ p \qquad (3) \ \text{四面体} \mathrm{OAPQ} \text{の体積} \]
岡山大学 国立 岡山大学 2015年 第1問
$n$を$2$以上の自然数とし,$1$から$n$までの自然数$k$に対して,番号$k$をつけたカードをそれぞれ$k$枚用意する.これらすべてを箱に入れ,箱の中から$2$枚のカードを同時に引くとき,次の問いに答えよ.

(1)用意したカードは全部で何枚か答えよ.
(2)引いたカード$2$枚の番号が両方とも$k$である確率を$n$と$k$の式で表せ.
(3)引いたカード$2$枚の番号が一致する確率を$n$の式で表せ.
(4)引いたカード$2$枚の番号が異なっている確率を$p_n$とする.不等式$p_n \geqq 0.9$を満たす最小の自然数$n$の値を求めよ.
広島大学 国立 広島大学 2015年 第5問
$m,\ n$を自然数とする.次の問いに答えよ.

(1)$m \geqq 2$,$n \geqq 2$とする.異なる$m$種類の文字から重複を許して$n$個を選び,$1$列に並べる.このとき,ちょうど$2$種類の文字を含む文字列は何通りあるか求めよ.
(2)$n \geqq 3$とする.$3$種類の文字$a,\ b,\ c$から重複を許して$n$個を選び,$1$列に並べる.このとき$a,\ b,\ c$すべての文字を含む文字列は何通りあるか求めよ.
(3)$n \geqq 3$とする.$n$人を最大$3$組までグループ分けする.このときできたグループ数が$2$である確率$p_n$を求めよ.ただし,どのグループ分けも同様に確からしいとする.
たとえば,$n=3$のとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人をグループ分けする方法は
$\{(\mathrm{A},\ \mathrm{B},\ \mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{B}),\ (\mathrm{C})\},\quad \{(\mathrm{A},\ \mathrm{C}),\ (\mathrm{B})\}$
$\{(\mathrm{B},\ \mathrm{C}),\ (\mathrm{A})\},\quad \{(\mathrm{A}),\ (\mathrm{B}),\ (\mathrm{C})\}$
の$5$通りであるので,$\displaystyle p_3=\frac{3}{5}$である.
(4)$(3)$の確率$p_n$が$\displaystyle \frac{1}{3}$以下となるような$n$の範囲を求めよ.
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。