タグ「不等号」の検索結果

53ページ目:全4604問中521問~530問を表示)
福岡大学 私立 福岡大学 2016年 第3問
$x \geqq 0$に対して,$\displaystyle f(x)=\int_0^{2x} |t(t-x)| \, dt-\frac{9}{2}x^2+6x+\frac{1}{2}$とする.次の問いに答えよ.

(1)$f(x)$を$x$の$3$次式で表せ.
(2)$f(x)-a=0$が互いに異なる$3$つの実数解をもつとき,$a$の値の範囲を求めよ.
広島女学院大学 私立 広島女学院大学 2016年 第2問
次の各問いに答えよ.

(1)$2x^2+7x+3<0$を満たすような$2x^2+3x-2=0$の解を求めよ.$[$7$]$
(2)$3$点$(0,\ 2)$,$(2,\ -8)$,$(-2,\ -12)$を通る放物線をグラフとする$2$次関数は$y=[$8$]$である.
(3)放物線$y=a(x-a)^2-a$が$x$軸の正の部分と交わる$a$の値の範囲は$a>[$9$]$,$[$10$]<a<[$11$]$である.
広島女学院大学 私立 広島女学院大学 2016年 第2問
$0 \leqq x \leqq 2$の範囲で,常に$3x^2-2ax+a>0$となる定数$a$の範囲を求めよ.$[$2$]$
広島女学院大学 私立 広島女学院大学 2016年 第4問
$0^\circ \leqq \theta \leqq {180}^\circ$とする.$15 \cos^2 \theta-16 \sin \theta \cos \theta-3=0$のとき,$\tan \theta$の値は次のようになる.

$\tan \theta=[$7$]$(ただし,$0^\circ \leqq \theta \leqq {90}^\circ$)
$\tan \theta=[$8$]$(ただし,${90}^\circ < \theta \leqq {180}^\circ$)

となる.
金沢工業大学 私立 金沢工業大学 2016年 第2問
関数$y=7 \sin^2 \theta+3 \cos 2 \theta+6 \cos \theta (0 \leqq \theta \leqq \pi)$を考える.

(1)$\cos \theta=t$とおくと,$t$の値の範囲は$[アイ] \leqq t \leqq [ウ]$である.
(2)$y$は$t$の$2$次関数として,
\[ y=-t^2+[エ]t+[オ] \quad ([アイ] \leqq t \leqq [ウ]) \]
と表される.
(3)$y$は$\theta=[カ]$で最大値$[キ]$をとり,$\theta=[ク]$で最小値$[ケコ]$をとる.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.
\begin{mawarikomi}{45mm}{

\begin{tabular}{|c|c|c|c|c|c|}
\hline
& $\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ & $\mathrm{D}$ & $\mathrm{E}$ \\ \hline
$x$ & $7$ & $3$ & $5$ & $2$ & $3$ \\ \hline
$y$ & $4$ & $5$ & $7$ & $3$ & $6$ \\ \hline
\end{tabular}
}

(1)右の表は,ある中学校の$5$人の生徒$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$に$2$つの科目の小テストを行った結果である.$2$つの科目の得点をそれぞれ$x,\ y$とする.
このとき,$x$の分散を求めると$[ ]$であり,$x$と$y$の共分散を求めると$[ ]$である.
(2)三角形$\mathrm{OAB}$において辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$t:1-t$に内分する点を$\mathrm{Q}$とおく(ただし$0<t<1$とする).$\mathrm{AQ}$と$\mathrm{BP}$の交点を$\mathrm{R}$とおく.$\mathrm{BR}=\mathrm{RP}$となるとき,$\overrightarrow{\mathrm{OR}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OR}}=[ ]$となり,そのときの$t$の値を求めると$t=[ ]$となる.

\end{mawarikomi}
広島経済大学 私立 広島経済大学 2016年 第4問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$0^\circ \leqq \theta \leqq {180}^\circ$とする.$\displaystyle \cos \theta=-\frac{3}{4}$のとき,
\[ \sin \theta=\frac{\sqrt{[$31$]}}{[$32$]},\quad \tan \theta=-\frac{\sqrt{[$33$]}}{[$34$]} \]
である.
(2)$2$直線$y=-x$と$y=\sqrt{3}x$のなす角$\theta$は${[$35$]}^\circ$である.ただし,$0^\circ \leqq \theta \leqq {90}^\circ$とする.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={75}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{CA}=6$であるとき,
\[ \angle \mathrm{B}={[$36$]}^\circ,\quad \mathrm{AB}=[$37$] \sqrt{[$38$]},\quad \mathrm{BC}=[$39$]+[$40$] \sqrt{[$41$]}, \]
$\triangle \mathrm{ABC}$の外接円の半径は$[$42$] \sqrt{[$43$]}$である.
広島経済大学 私立 広島経済大学 2016年 第3問
$2$次関数$y=ax^2-2ax+b-2$のグラフを$C$とする.ただし,$a,\ b$は定数とする.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$C$が$2$点$(-2,\ 1)$,$(1,\ 4)$を通るとき,
\[ a=-\frac{[$22$]}{[$23$]},\quad b=\frac{[$24$]}{[$25$]} \]
である.
(2)この関数の最大値が$3$であり,$C$が点$(-1,\ 1)$を通るとき,
\[ a=-\frac{[$26$]}{[$27$]},\quad b=\frac{[$28$]}{[$29$]} \]
である.
(3)$C$が$x$軸と接し,点$(3,\ 2)$を通るとき,
\[ a=\frac{[$30$]}{[$31$]},\quad b=\frac{[$32$]}{[$33$]} \]
である.
(4)区間$0 \leqq x \leqq 4$において,この関数の最大値が$5$,最小値が$-2$であるとき,
\[ a=\frac{[$34$]}{[$35$]},\quad b=\frac{[$36$]}{[$37$]},\quad \text{または} \quad a=-\frac{[$38$]}{[$39$]},\quad b=\frac{[$40$]}{[$41$]} \]
である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。