タグ「不等号」の検索結果

452ページ目:全4604問中4511問~4520問を表示)
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
獨協大学 私立 獨協大学 2010年 第3問
直線$\ell$と$m$が

直線$\ell$:$y=2x$
直線$m$:点$(2,\ 2)$を通る傾き$a$の直線(ただし,$a<0$)

と与えられているとき,以下の問題に答えよ.

(1)直線$\ell$と$m$の交点を$\mathrm{A}$としたとき,点$\mathrm{A}$の座標を求めよ.
(2)直線$m$と$x$軸の交点を$\mathrm{B}$としたとき,点$\mathrm{B}$の$x$座標を求めよ.
(3)原点を$\mathrm{O}$としたとき,三角形$\mathrm{AOB}$の面積$S$を求めよ.
(4)$(3)$で求めた面積$S$の値が$\displaystyle \frac{9}{2}$のとき直線$m$の傾き$a$の値を求めよ.
中央大学 私立 中央大学 2010年 第1問
以下の設問に答えよ.

(1)「$14$で割り切れ,$11$で割ると$1$余る」自然数の中で最小のもの$k$を求めよ.
(2)自然数$22+77+k$は,次の条件を満たすことを示せ.
$(*)$ \quad $2,\ 7,\ 11$のどれで割っても$1$余る
(3)$(*)$を満たす自然数$n$で,$400 \leqq n \leqq 700$であるものをすべて求めよ.
中央大学 私立 中央大学 2010年 第2問
一辺の長さ$1$の正方形$\mathrm{ABCD}$を考える.まず辺$\mathrm{AB}$上に点$\mathrm{E}$を決め,辺$\mathrm{BC}$上の点$\mathrm{F}$,辺$\mathrm{CD}$上の点$\mathrm{G}$,辺$\mathrm{DA}$上の点$\mathrm{H}$を「四角形$\mathrm{EFGH}$が長方形になる」ようにとる.線分$\mathrm{BE}$の長さを$x (0<x<1)$とおき,以下の設問に答えよ.

(1)線分$\mathrm{BF}$の長さを$x$で表せ.
(2)$\triangle \mathrm{FCG}$の面積を$x$で表せ.
中央大学 私立 中央大学 2010年 第3問
関数
\[ f(x)=|x| \left( \frac{1}{3}x^2-\frac{1}{4}x \right)-\frac{3}{4}x^2+1 \]
に対し,以下の設問に答えよ.

(1)$a<0$とするとき,関数$y=f(x)$の$x=a$における微分係数$f^\prime(a)$を求めよ.
(2)$b>0$とするとき,関数$y=f(x)$の$x=b$における微分係数$f^\prime(b)$を求めよ.
(3)関数$y=f(x)$の区間$-2 \leqq x \leqq 3$における最大値と最小値を求めよ.
中央大学 私立 中央大学 2010年 第1問
次の問いの答を記入せよ.

(1)$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,$|\overrightarrow{a}+\overrightarrow{b}|=6$のとき,$|\overrightarrow{a}-\overrightarrow{b}|$の値を求めよ.
(2)定義域が$0 \leqq x \leqq 3$である$2$次関数$y=-ax^2+2ax+b$の最大値が$3$で,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.ただし$a>0$とする.
(3)$\displaystyle \cos \theta=-\frac{\sqrt{3}}{2}$を満たす角$\theta$を求めよ.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(4)$3$つの数$x-2,\ x+1,\ x+7$がこの順で等比数列となるとき,$x$の値を求めよ.
(5)白玉$3$個,赤玉$2$個が入っている袋から玉を$1$個取り出し色を確認してからもとに戻す.この操作を$3$回続けて行う.$1$回目に白,$2$回目に赤,$3$回目に赤の玉が取り出される確率を求めよ.ただし,どの玉も取り出される確率は等しいとする.
(6)関数$y=x^3-12x$の区間$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(7)次の条件を満たす関数$f(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f^\prime(x)=6x^2-2x+3 \\
f(1)=7
\end{array} \right. \]
中央大学 私立 中央大学 2010年 第4問
$1$から$10$までの数字が$1$つずつ書かれた球$10$個の入っている箱がある.
\begin{itemize}
この箱から$1$個の球を取り出したとき,その球の数字を$X$とする.
$1$回目に取り出した球を箱に戻さず,再び$1$個の球を取り出す.$2$回目に取り出した球の数字を$Y$とする.
$2$回目に取り出した球も箱に戻さず,再び$1$個の球を取り出す.$3$回目に取り出した球の数字を$Z$とする.
\end{itemize}
このとき,以下の設問に答えよ.

(1)「$(X,\ Y)$の組み合わせの総数」および「$(X,\ Y,\ Z)$の組み合わせの総数」を求めよ.
(2)$X<Y$となる確率を求めよ.
(3)$X<Z<Y$となる確率を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第4問
$k$を実数の定数とするとき,下記の問いに答えなさい.

(1)$f(x)=2x^3+x^2-5x+3$,$g(x)=x^4+x^2-(k+1)x+k$とおく.$k$の値が変化するとき,曲線$y=f(x)$と$y=g(x)$の共有点の個数を調べなさい.
(2)$x$についての方程式$\displaystyle 6 \tan x+\cos x-k \sin x=0 \left( 0<x<\frac{\pi}{2} \right)$を考える.$k$の値が変化するとき,実数解の個数が$2$個であるのは$[$1$]$のときである.また実数解の個数が$1$個であるのは$[$2$]$のときであり,実数解が存在しないのは$[$3$]$のときである.
$[$1$]$,$[$2$]$,$[$3$]$に該当する$k$の条件を答えなさい.
中央大学 私立 中央大学 2010年 第1問
$xy$平面で,次の不等式の表す領域を$D$とする.
\[ D:|x|+2 |y| \leqq 60 \]
以下の設問に答えよ.

(1)$D$を$xy$平面上に図示せよ.
(2)次の条件を満たす整数の組$(m,\ n)$の個数を求めよ.
\[ m+2n \leqq 60,\quad m \geqq 1,\quad n \geqq 1 \]
(3)$D$に含まれる整数の組$(m,\ n)$の個数を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。