タグ「不等号」の検索結果

40ページ目:全4604問中391問~400問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2016年 第3問
放物線$y=1-4x^2$上の点$\mathrm{P}(a,\ b)$と,この放物線の点$\mathrm{P}$を通る接線を$\ell$とおく.また,直線$\ell$と放物線$y=-x^2+2x+4$とで囲まれる図形の面積を$S(a)$とおく.このとき,次の問に答えなさい.

(1)$a=0$のとき,接線$\ell$と放物線$y=-x^2+2x+4$の交点の$x$座標は$x=[アイ]$,$[ウ]$である.また,$\displaystyle S(0)=\frac{[エオ]}{[カ]}$である.

(2)$0 \leqq b$となるような$a$の値の範囲は$\displaystyle \frac{[キク]}{[ケ]} \leqq a \leqq \frac{[コ]}{[サ]}$である.

(3)接線$\ell$の方程式は$y=-[シ]ax+[ス]a^2+[セ]$であり,
$\displaystyle S(a)=\frac{[ソタ]}{[チ]} \left( [ツ]a^2+[テ]a+[ト] \right)^{\frac{\mkakko{ナ}}{\mkakko{ニ}}}$となる.
また$S(a)$が最小となるのは$\displaystyle a=\frac{[ヌネ]}{[ノ]}$のときである.
愛知工業大学 私立 愛知工業大学 2016年 第1問
次の$[ ]$を適当に補え.$(6)$,$(7)$は選択問題である.

(1)$a$を定数とする.不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす$x$の範囲は$[ア]$である.また,不等式$x^2-(4a+1)x+4a^2+2a<0$をみたす整数$x$が$x=2$だけであるような$a$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=3,\quad a_{n+1}-a_n=2(3^n-n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,$a_4=[ウ]$であり,$a_n=[エ]$である.
(3)$\displaystyle \log_2(4-x)+\log_4(x-1)=\frac{1}{2}$をみたす$x$は$x=[オ]$である.
(4)$a$を定数とし,$f(x)=x^3-3x^2-9x+a$とする.区間$-2 \leqq x \leqq 0$における$f(x)$の最小値が$5$であるとき,$a=[カ]$である.またこのとき,区間$-2 \leqq x \leqq 0$における$f(x)$の最大値は$[キ]$である.
(5)$\displaystyle z=\frac{1+i}{\sqrt{3}+i}$とする.$z^n$が実数となる最小の自然数$n$は$n=[ク]$であり,このとき,$z^n=[ケ]$である.ただし,$i$は虚数単位である.
(6)$1$枚の硬貨を投げ,表が出たときは白球$1$個を壺に入れ,裏が出たときは黒球$1$個を壺に入れる.硬貨を$3$回投げて壺に$3$個の球が入っている.

(i) 壺に白球$1$個と黒球$2$個が入っている確率は$[コ]$である.
(ii) 壺の中から$2$個の球を同時に取り出したとき,それが白球$1$個と黒球$1$個である確率は$[サ]$である.

(7)等式$\displaystyle \frac{1}{x}+\frac{5}{y}=1$をみたす自然数$x,\ y$の組は$(x,\ y)=[シ]$である.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2x+3y=2$のとき,$x^2 \leqq y \leqq 2x$を満たす$x$の範囲は,
\[ [ア] \leqq x \leqq [イ] \]
である.
(2)$3$個のさいころを同時に投げて出た目の積$M$が奇数となる確率は$[ウ]$である.また,$M$を$3$で割ったときの余りが$2$となる確率は$[エ]$である.
名城大学 私立 名城大学 2016年 第4問
$f(x)=e^{-x} \sin x,\ g(x)=e^{-x} \cos x$とするとき,次の各問に答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)すべての$x$について,$f^\prime(x)=af(x+b)$が成り立つような定数$a,\ b$を求めよ.ただし,$0 \leqq b \leqq \pi$とする.
(3)$\displaystyle \frac{\pi}{4} \leqq x \leqq \frac{5\pi}{4}$において,曲線$y=f(x)$と$y=g(x)$で囲まれた部分の面積を求めよ.
名城大学 私立 名城大学 2016年 第3問
$1$個のさいころを$3$回投げるとき,出る目の最大値を$m$とする.ただし,すべての目が等しいときは,それを$m$とする.

(1)$m=4$となる確率を求めよ.
(2)$m=k$となる確率を$p_k$とするとき,$p_k$を$k$を用いて表せ.ただし,$2 \leqq k \leqq 6$とする.
(3)$(2)$で求めた$p_k$を最大にする$k$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱があり,$\mathrm{A}$の箱には$7$個の黒ボールと$3$個の白ボールが入っている.$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の箱にも黒ボールと白ボールが入っていて,どの箱においても$1$個を無作為に取り出したときに黒ボールである確率は$\alpha$である($0<\alpha<1$).また,少なくとも$3$個以上のボールがそれぞれの箱には入っている.このとき,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の箱からそれぞれ$3$個のボールを無作為に取り出し$\mathrm{A}$の箱に加えた後,$\mathrm{A}$の箱から$1$個のボールを無作為に取り出したときにそれが黒ボールである確率は
\[ \frac{[$1$][$2$]}{[$3$][$4$]}+\frac{[$5$][$6$]}{[$7$][$8$]} \alpha \]
である.
(2)$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$の$4$つの箱があり,$\mathrm{E}$の箱には$7$個の黒ボールと$3$個の白ボールが入っている.$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$の箱にも黒ボールと白ボールが入っていて,どの箱においても$1$個を無作為に取り出したときに黒ボールである確率は$\alpha$である($0<\alpha<1$).また,少なくとも$3$個以上のボールがそれぞれの箱には入っている.このとき,まず,$\mathrm{E}$と$\mathrm{F}$の箱からそれぞれ$3$個のボールを無作為に取り出し交換してもとの箱に戻し,次に,$\mathrm{E}$と$\mathrm{G}$の箱からそれぞれ$3$個のボールを無作為に取り出し交換してもとの箱に戻し,次に,$\mathrm{E}$と$\mathrm{H}$の箱からそれぞれ$3$個のボールを無作為に取り出し交換してもとの箱に戻した後,$\mathrm{E}$の箱から$1$個のボールを無作為に取り出したときにそれが黒ボールである確率は
\[ \frac{\kakkofour{$9$}{$10$}{$11$}{$12$}}{10000}+\frac{[$13$][$14$][$15$]}{1000} \alpha \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
\begin{mawarikomi}{50mm}{

(図は省略)
}
図のような$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 0)$,$\mathrm{C}(0,\ 1,\ 0)$,$\mathrm{D}(0,\ 0,\ 1)$,$\mathrm{E}(2,\ 0,\ 1)$,$\mathrm{F}(2,\ 1,\ 1)$,$\mathrm{G}(0,\ 1,\ 1)$を頂点とする直方体を,平面$x+y+z=a (1<a<3)$で切断したとき,その断面の面積$S$は
\end{mawarikomi}
\[ \frac{\sqrt{[$16$]}}{[$17$]} \left( [$18$][$19$]a^2+[$20$][$21$]a+[$22$][$23$] \right) \]
となる.

また,切断した断面の各頂点と$\mathrm{O}(0,\ 0,\ 0)$を結んでできる角錐の体積$V$は,
\[ a=\frac{[$24$]+\sqrt{[$25$][$26$]}}{[$27$]} \]
のときに最大になる.このとき,
\[ V=\frac{[$28$][$29$]+[$30$][$31$] \sqrt{[$32$][$33$]}}{[$34$][$35$]} \]
である.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
西南学院大学 私立 西南学院大学 2016年 第1問
不等式$x^2-4<x+2$を満たす整数のうち最大のものは,$x=[ア]$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。