タグ「不等号」の検索結果

4ページ目:全4604問中31問~40問を表示)
東京大学 国立 東京大学 2016年 第3問
$a$を$1<a<3$をみたす実数とし,座標空間内の$4$点
\[ \mathrm{P}_1(1,\ 0,\ 1),\quad \mathrm{P}_2(1,\ 1,\ 1),\quad \mathrm{P}_3(1,\ 0,\ 3),\quad \mathrm{Q}(0,\ 0,\ a) \]
を考える.直線$\mathrm{P}_1 \mathrm{Q}$,$\mathrm{P}_2 \mathrm{Q}$,$\mathrm{P}_3 \mathrm{Q}$と$xy$平面の交点をそれぞれ$\mathrm{R}_1$,$\mathrm{R}_2$,$\mathrm{R}_3$として,三角形$\mathrm{R}_1 \mathrm{R}_2 \mathrm{R}_3$の面積を$S(a)$とする.$S(a)$を最小にする$a$と,そのときの$S(a)$の値を求めよ.
東京大学 国立 東京大学 2016年 第6問
座標空間内を,長さ$2$の線分$\mathrm{AB}$が次の$2$条件$(ⅰ)$,$(ⅱ)$をみたしながら動く.

$(ⅰ)$ 点$\mathrm{A}$は平面$z=0$上にある.
$(ⅱ)$ 点$\mathrm{C}(0,\ 0,\ 1)$が線分$\mathrm{AB}$上にある.

このとき,線分$\mathrm{AB}$が通過することのできる範囲を$K$とする.$K$と不等式$z \geqq 1$の表す範囲との共通部分の体積を求めよ.
広島大学 国立 広島大学 2016年 第4問
$xy$平面上に原点を出発点として動く点$\mathrm{Q}$があり,次の試行を行う.

$1$枚の硬貨を投げ,表が出たら$\mathrm{Q}$は$x$軸の正の方向に$1$,裏が出たら$y$軸の正の方向に$1$動く.ただし,点$(3,\ 1)$に到達したら$\mathrm{Q}$は原点に戻る.

この試行を$n$回繰り返した後の$\mathrm{Q}$の座標を$(x_n,\ y_n)$とする.次の問いに答えよ.

(1)$(x_4,\ y_4)=(0,\ 0)$となる確率を求めよ.
(2)$(x_8,\ y_8)=(5,\ 3)$となる確率を求めよ.
(3)$x_8+y_8 \leqq 4$となる確率を求めよ.
(4)$x_{4n}+y_{4n} \leqq 4k$となる確率を$n$と$k$で表せ.ここで$k$は$n$以下の自然数とする.
広島大学 国立 広島大学 2016年 第3問
座標空間に$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(s,\ s,\ s),\quad \mathrm{B}(-1,\ 1,\ 1),\quad \mathrm{C}(0,\ 0,\ 1) \]
がある.ただし,$s>0$とする.$t,\ u,\ v$を実数とし,
\[ \overrightarrow{d}=\overrightarrow{\mathrm{OB}}-t \overrightarrow{\mathrm{OA}},\quad \overrightarrow{e}=\overrightarrow{\mathrm{OC}}-u \overrightarrow{\mathrm{OA}}-v \overrightarrow{\mathrm{OB}} \]
とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$のとき,$t$を$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{e}$,$\overrightarrow{d} \perp \overrightarrow{e}$のとき,$u,\ v$を$s$を用いて表せ.
(3)$(2)$のとき,$2$点$\mathrm{D}$,$\mathrm{E}$を
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{d},\quad \overrightarrow{\mathrm{OE}}=\overrightarrow{e} \]
となる点とする.四面体$\mathrm{OADE}$の体積が$2$であるとき,$s$の値を求めよ.
広島大学 国立 広島大学 2016年 第4問
$xy$平面上に原点を出発点として動く点$\mathrm{Q}$があり,次の試行を行う.

$1$枚の硬貨を投げ,表が出たら$\mathrm{Q}$は$x$軸の正の方向に$1$,裏が出たら$y$軸の正の方向に$1$動く.ただし,点$(3,\ 1)$に到達したら$\mathrm{Q}$は原点に戻る.

この試行を$n$回繰り返した後の$\mathrm{Q}$の座標を$(x_n,\ y_n)$とする.次の問いに答えよ.

(1)$(x_4,\ y_4)=(0,\ 0)$となる確率を求めよ.
(2)$(x_8,\ y_8)=(5,\ 3)$となる確率を求めよ.
(3)$x_8+y_8 \leqq 4$となる確率を求めよ.
(4)$x_{4n}+y_{4n} \leqq 4k$となる確率を$n$と$k$で表せ.ここで$k$は$n$以下の自然数とする.
名古屋大学 国立 名古屋大学 2016年 第2問
$n$を正の整数とし,$k$を$1 \leqq k \leqq n+2$を満たす整数とする.$n+2$枚のカードがあり,そのうちの$1$枚には数字$0$が,他の$1$枚には数字$2$が,残りの$n$枚には数字$1$が書かれている.この$n+2$枚のカードのうちから無作為に$k$枚のカードを取り出すとする.このとき,次の問に答えよ.

(1)取り出した$k$枚のカードに書かれているすべての数字の積が$1$以上になる確率を求めよ.
(2)取り出した$k$枚のカードに書かれているすべての数字の積が$2$となる確率$Q_n(k)$を求めよ.
(3)与えられた$n$に対して,確率$Q_n(k)$が最大となる$k$の値と,その最大値を求めよ.
東京大学 国立 東京大学 2016年 第5問
$k$を正の整数とし,$10$進法で表された小数点以下$k$桁の実数
\[ 0.a_1a_2 \cdots a_k=\frac{a_1}{10}+\frac{a_2}{{10}^2}+\cdots +\frac{a_k}{{10}^k} \]
を$1$つとる.ここで,$a_1,\ a_2,\ \cdots,\ a_k$は$0$から$9$までの整数で,$a_k \neq 0$とする.

(1)次の不等式をみたす正の整数$n$をすべて求めよ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{n}-{10}^k<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(2)$p$が$5 \cdot {10}^{k-1}$以上の整数ならば,次の不等式をみたす正の整数$m$が存在することを示せ.
\[ 0.a_1a_2 \cdots a_k \leqq \sqrt{m}-p<0.a_1a_2 \cdots a_k+{10}^{-k} \]
(3)実数$x$に対し,$r \leqq x<r+1$をみたす整数$r$を$[x]$で表す.$\sqrt{s}-[\sqrt{s}]=0.a_1 a_2 \cdots a_k$をみたす正の整数$s$は存在しないことを示せ.
名古屋工業大学 国立 名古屋工業大学 2016年 第2問
数列$\{a_n\}$は
\[ a_1=4,\quad a_{n+1}=\frac{(3n+4)a_n-9n-6}{(n+1)a_n-3n-1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.

(1)すべての自然数$n$に対し,$a_n>3$であることを示せ.
(2)$\displaystyle b_n=\frac{1}{a_n-3}$とおく.$b_{n+1}$を$b_n$と$n$の式で表せ.
(3)$(2)$で定めた数列$\{b_n\}$に対し$c_n=b_{n+1}-b_n$とおく.数列$\{c_n\}$の一般項を求めよ.
(4)数列$\{a_n\}$の一般項を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第3問
座標空間内に
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(1,\ 2,\ 2),\quad \mathrm{B}(1,\ 0,\ -1),\quad \mathrm{C}(2,\ -1,\ 1) \]
を頂点とする四面体$\mathrm{OABC}$がある.$t>0$に対して半直線$\mathrm{OB}$上の点$\mathrm{P}$を$\mathrm{OB}:\mathrm{OP}=1:t$となるようにとる.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AP}}$を$t$を用いて表せ.
(2)$\triangle \mathrm{APC}$の面積を$S(t)$とおく.$S(t)$が最小になる$t$の値と,そのときの$S(t)$の値を求めよ.
(3)点$\mathrm{Q}$は直線$\mathrm{OB}$上にあり,点$\mathrm{R}$は直線$\mathrm{AC}$上にある.線分$\mathrm{QR}$の長さの最小値と,そのときの点$\mathrm{R}$の座標を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。