タグ「不等号」の検索結果

359ページ目:全4604問中3581問~3590問を表示)
島根大学 国立 島根大学 2011年 第2問
$a$を実数とする.$2$次方程式$x^2+2ax+(a-1)=0$の解を$\alpha,\ \beta$とする.このとき,次の問いに答えよ.

(1)$\alpha$と$\beta$は異なる実数であることを示せ.
(2)$\alpha$と$\beta$のうち,少なくとも$1$つは負であることを示せ.
(3)$\alpha \leqq 0,\ \beta \leqq 0$であるとき,$\alpha^2+\beta^2$の最小値を求めよ.
島根大学 国立 島根大学 2011年 第3問
$U=\{k \; | \; k\text{は自然数,}\ 1 \leqq k \leqq 25 \}$を全体集合とし,$U$の部分集合$A,\ B$を次のように定める.
\[ A=\{k \; | \; k \in U \text{かつ} k \text{は3の倍数} \},\quad B=\{k \; | \; k \in U \text{かつ} k \text{は4の倍数} \} \]
このとき,次の問いに答えよ.

(1)2つの集合$A \cap B,\ A \cup B$を,要素を書き並べる方法で表せ.
(2)$m$と$n$を自然数とし,2次方程式
\[ (*) \quad x^2-mx+n=0 \]
が整数解をもつとする.このとき,$n$が素数ならば,2次方程式$(*)$は1を解としてもつことを証明せよ.
(3)$m,\ n$を集合$\overline{A} \cap \overline{B}$の要素とする.このとき,2次方程式$(*)$の解がすべて2以上の整数となる$m$と$n$の組$(m,\ n)$をすべて求めよ.ただし,$\overline{A}$と$\overline{B}$は,それぞれ$A$と$B$の補集合を表す.
徳島大学 国立 徳島大学 2011年 第1問
次の問いに答えよ.

(1)次の連立不等式を満たす$x$の値の範囲を求めよ.
\[ \left(\frac{1}{27} \right)^x<3^{5x-2},\quad \log_9 \frac{3}{x}>1 \]
(2)$0 \leqq x \leqq \pi$のとき,次の不等式を満たす$x$の値の範囲を求めよ.
\[ \sqrt{3} \sin x -\cos x < \sqrt{3} \]
徳島大学 国立 徳島大学 2011年 第2問
不等式$|x+2y|+|2x-y| \leqq 1$の表す領域を$D$とする.

(1)領域$D$を図示せよ.
(2)領域$D$における$x-y$の最大値および最小値を求めよ.
(3)領域$D$における$|x|-|y|$の最大値および最小値を求めよ.
徳島大学 国立 徳島大学 2011年 第3問
$a>0$とし,$n=1,\ 2,\ 3,\ \cdots$とする.曲線$C_1$を$\displaystyle y=ax^2+n-\frac{1}{2}$,曲線$C_2$を$y=\log x$とする.$C_1$と$C_2$が共有点$(p,\ q)$をもち,この点で共通の接線をもつとする.

(1)$a$と$(p,\ q)$を$n$で表せ.
(2)$C_1,\ C_2$,$x$軸および$y$軸で囲まれた部分の面積$S_n$を$n$で表せ.
(3)(2)で求めた$S_n$に対し,$\displaystyle \lim_{n \to \infty}\frac{S_{n+1}}{S_n}$を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第3問
1辺の長さが1の正四面体OABCにおいて,3辺OA,OB,AC上にそれぞれ点D,E,Fを$\displaystyle \text{OD}=\frac{1}{2},\ \text{OE}=t \ (0<t<1),\ \text{AF}=\frac{2}{3}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{DE}},\ \overrightarrow{\mathrm{DF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて表せ.
(2)$\overrightarrow{\mathrm{DE}} \perp \overrightarrow{\mathrm{DF}}$のとき,$t$の値を求めよ.
(3)3点D,E,Fが定める平面が直線BCと交わる点をGとするとき,線分BGの長さを$t$を用いて表せ.
岩手大学 国立 岩手大学 2011年 第3問
$\{a_n\}$は,初項$a_1=-1$,公差$d$の等差数列で,$\{b_n\}$は,初項$b_1=2011$,公比$r$の等比数列とする.ただし,$d \neq 0,\ r \neq 0$とする.これらの数列が
\[ a_nb_{n-1}+3b_na_{n-1}-2b_{n-1}=0 \quad (n \geqq 2) \]
を満たしているとき,次の問いに答えよ.

(1)$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(2)$|b_n|<|a_n|$となる最小の$n$の値を求めよ.
奈良女子大学 国立 奈良女子大学 2011年 第6問
直線$\ell:y=x$上を動く点Pと,Pで$\ell$と接する円$C_1$を考える.Pの座標を$(t,\ t)$,$C_1$の中心の座標を$(a,\ b)$とする.ただし$t>0,\ a>b$とする.以下の問いに答えよ.

(1)以下の(i),(ii)に答えよ.

\mon[(i)] $a+b$を$t$を用いて表せ.
\mon[(ii)] $C_1$の半径を$a,\ b$を用いて表せ.

(2)中心が$(1,\ -1)$の円$C_2$も$\ell$と接しているとする.$C_1$が,さらに$C_2$に接しているとする.以下の(i),(ii)に答えよ.

\mon[(i)] $(a+b)^2=8(a-b)$を示せ.
\mon[(ii)] $b$の最大値を求めよ.
島根大学 国立 島根大学 2011年 第2問
数列$\{a_n\}$と$\{b_n\}$を
\[ a_1=3, b_1=\frac{3}{2}, a_{n+1}=b_n, b_{n+1}=\frac{a_n+b_n}{2} \quad (n \geqq 1) \]
で定義する.このとき,次の問いに答えよ.

(1)すべての$n \geqq 1$に対して$a_{n+1}+\alpha b_{n+1}=\beta(a_n+\alpha b_n)$が成り立つ$\alpha,\ \beta$の値の組をすべて求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$a_n=2$となる自然数$n$の存在性を調べよ.
岩手大学 国立 岩手大学 2011年 第5問
2つの曲線
\[ C_1:y=2x^2,\quad C_2:y=-\frac{1}{4}x^2 \]
と2つの直線
\[ \ell_1:y=ax+t-1,\quad \ell_2:y=bx+t \]
があり,$\ell_1$は$C_1$に接し,$\ell_2$は$C_2$に接している.ただし,$a,\ b,\ t$は定数で,$a>0,\ b>0,\ 0<t<1$を満たすものとする.このとき,次の問いに答えよ.

(1)$a$および$b$をそれぞれ$t$で表せ.
(2)$C_1,\ \ell_1$および$y$軸で囲まれた図形の面積$S_1$と,$C_2,\ \ell_2$および$y$軸で囲まれた図形の面積$S_2$が等しくなるときの$t$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。