タグ「不等号」の検索結果

24ページ目:全4604問中231問~240問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第6問
関数$f(x)=(\log x)^2-\log x (x>0)$を考える.次の各問いに答えよ.

(1)$f(x)=0$を満たす$x$をすべて求めよ.
(2)導関数$f^\prime(x)$および$2$次導関数$f^{\prime\prime}(x)$をそれぞれ求めよ.また関数$y=f(x)$のグラフの概形を描け.ただし関数$y=f(x)$の増減,凹凸,極限$\displaystyle \lim_{x \to 0}f(x)$,$\displaystyle \lim_{x \to \infty}f(x)$を明示すること.
(3)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第3問
数列$\{a_n\}$を$a_1=a_2=1$,$a_{n+2}=a_{n+1}+a_n (n=1,\ 2,\ 3,\ \cdots)$によって定める.また$\alpha$を$\displaystyle \alpha=1+\frac{1}{\alpha}$を満たす正の実数とする.次の各問いに答えよ.

(1)数列$\{b_n\}$を$\displaystyle b_n=\frac{a_{n+1}}{a_n}$で定める.$b_{n+1}$を$b_n$を用いて表せ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して$b_n \geqq 1$となることを示せ.
(3)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_{n+1|-\alpha} \leqq \frac{1}{\alpha} |b_n-\alpha|$となることを示せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して$\displaystyle |b_n-\alpha| \leqq \frac{1}{\alpha^n}$となることを示せ.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
九州工業大学 国立 九州工業大学 2016年 第2問
$s>0$,$t>0$とする.正の数からなる$2$つの数列$\{a_n\}$,$\{b_n\}$は初項と第$2$項が$a_1=b_1=s$,$a_2=b_2=t$であり,すべての自然数$n$に対して
\[ a_{n+2}=\frac{a_{n+1}+a_n}{2},\quad b_{n+2}=\sqrt{b_{n+1}b_n} \]
をみたすとする.次に答えよ.

(1)$a_3,\ b_3,\ a_4,\ b_4$を$s,\ t$を用いて表せ.
(2)自然数$n$に対して,$c_n=a_{n+1}-a_n$とおく.数列$\{c_n\}$は等比数列であることを示し,一般項を求めよ.さらに,数列$\{a_n\}$の一般項を求めよ.
(3)自然数$n$に対して,$d_n=\log b_n$とおく.数列$\{d_n\}$の一般項を求めよ.さらに,数列$\{b_n\}$の一般項を$s$の累乗と$t$の累乗を用いて表せ.ただし,対数は自然対数とする.
(4)$\displaystyle \lim_{n \to \infty}a_n$と$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
(5)$t=s$は$\displaystyle \lim_{n \to \infty}a_n=\lim_{n \to \infty}b_n$であるための必要十分条件であることを示せ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。