タグ「不等号」の検索結果

175ページ目:全4604問中1741問~1750問を表示)
神戸薬科大学 私立 神戸薬科大学 2014年 第1問
次の問いに答えよ.

(1)$4$次式$x^2+(x^2-1)^2$を複素数の範囲で因数分解すると$[ア]$である.
(2)不等式$x+2 \leqq |x^2-x-6|$を$x$について解くと$[イ]$である.
(3)関数$F(x)$が$F^\prime(x)=(3x+2)^2$,$F(0)=3$を満たすとき$F(x)=[ウ]$である.
(4)$2$次方程式$x^2-4x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$a_n=\alpha^n-\beta^n$($n$は自然数)とおく.このとき,$\displaystyle \frac{a_{10}-2a_8}{a_9}$の値を求めると$[エ]$である.
獨協大学 私立 獨協大学 2014年 第2問
$0 \leqq \theta<2\pi$のとき,関数$y=\cos 2\theta-8 \cos \theta+12$の最大値と最小値を求めよ.また,そのときの$\theta$の値を求めよ.
千葉工業大学 私立 千葉工業大学 2014年 第2問
次の各問に答えよ.

(1)$0 \leqq \theta \leqq \pi$とする.$F=2 \sin \theta (\sin \theta-\sqrt{3} \cos \theta)$は
\[ \begin{array}{rcl}
F &=& [ア]-\sqrt{3} \sin 2\theta-\cos 2\theta \\
&=& [ア]-[イ] \sin \left( 2\theta+\frac{[ウ]}{[エ]} \pi \right)
\end{array} \]
と変形できる.ここで,$\displaystyle 0 \leqq \frac{[ウ]}{[エ]} \pi <2\pi$とする.$F$は$\displaystyle \theta=\frac{[オ]}{[カ]} \pi$のとき,最大値$[キ]$をとる.
(2)$a$を正の定数とし,$f(x)=2x^3-ax^2+27$とする.$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]ax \]
であり,$f(x)$は$\displaystyle x=\frac{[コ]}{[サ]}a$のとき,極小値$\displaystyle 27-\frac{[シ]}{[スセ]} a^{[ソ]}$をとる.どのような正の数$x$に対しても不等式$2x^3+27>ax^2$が成り立つような$a$の値の範囲は$0<a<[タ]$である.
愛知学院大学 私立 愛知学院大学 2014年 第3問
$\displaystyle f(x)=\sqrt{3} \cos \left( 2x-\frac{1}{2} \pi \right)$,$\displaystyle g(x)=\sin \left( 2x-\frac{1}{2} \pi \right)$とする.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)+g(x)$の最大値とそのときの$x$の値を求めなさい.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)g(x)$の最小値とそのときの$x$の値を求めなさい.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
甲南大学 私立 甲南大学 2014年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c,\ d,\ x,\ y$は$0$でない実数,$i$は虚数単位とする.
\[ \left( x+\frac{1}{yi} \right) \cdot \frac{1}{\displaystyle\frac{1}{a}+bi}=-\frac{d}{c}i \]
の関係があるとき,$x,\ y$を$a,\ b,\ c,\ d$を用いて表せ.
(2)$t$は$t>-1$を満たす定数とする.$-1 \leqq x \leqq t$における関数$f(x)=2x^2-4x+1$の最大値と最小値の差が$8$であるような$t$の値の範囲を求めよ.
甲南大学 私立 甲南大学 2014年 第3問
$n$は自然数とする.数列$\{a_n\}$を
\[ \left\{ \begin{array}{l}
a_1=3 \\
a_n=\sum_{k=1}^{n-1} a_k \quad (n \geqq 2)
\end{array} \right. \]
と定める.このとき,以下の問いに答えよ.

(1)$a_5$を求めよ.
(2)$n \geqq 2$のとき一般項$a_n$を求めよ.
(3)$a_n$が$10^{10}$を超える最小の$n$を求めよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
神戸薬科大学 私立 神戸薬科大学 2014年 第2問
次の問いに答えよ.

(1)円$(x-a)^2+(y-b)^2=A$($a,\ b,\ A$は定数で$A>0$)と直線$y=x$が接するとき,$A$を$a$と$b$で表すと$A=[オ]$である.
(2)円$x^2+y^2=5$に接し,傾きが$-2$である直線の方程式は$[カ]$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第7問
関数$f(x)=-2 \sin^2 x+\cos^2 x-6a \cos x$において,定数$a$が$0<a<1$を満たすとき,$f(x)$の最小値は$[ト]$となる.$\displaystyle a=\frac{1}{3}$のとき,$f(x)$の最小値は$[ナ]$であり,最大値は$[ニ]$である.
近畿大学 私立 近畿大学 2014年 第2問
条件$(x-2)^2+(y-2)^2=4$を満たす実数$x,\ y$を考える.$t=x+y$とおく.

(1)$t$のとりうる値の範囲は
\[ [ア]-[イ] \sqrt{[ウ]} \leqq t \leqq [エ]+[オ] \sqrt{[カ]} \]
である.
(2)$z=x^3+y^3-6xy$を$t$で表すと
\[ z=-\frac{[キ]}{[ク]} t^3+[ケ]t^2+[コ]t-[サシ] \]
となり,$z$の最大値は$[ス]+[セソ] \sqrt{[タ]}$であり,$z$の最小値は$[チ]-[ツ] \sqrt{[テ]}$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。