タグ「不等号」の検索結果

162ページ目:全4604問中1611問~1620問を表示)
福井大学 国立 福井大学 2014年 第3問
行列$\displaystyle A=\frac{1}{4} \left( \begin{array}{cc}
5 & 3 \\
3 & 5
\end{array} \right)$に関して,以下の問いに答えよ.

(1)次の等式が成り立つような$\cos \theta$,$\sin \theta$,$a$,$b$を求めよ.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
\[ A \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) = \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \left( \begin{array}{cc}
a & 0 \\
0 & b
\end{array} \right) \]
(2)$n$を正の整数とするとき,$A^n+(A^{-1})^n$を求めよ.
(3)$A=B^2$となる行列$B$をすべて求めよ.
福井大学 国立 福井大学 2014年 第2問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$t:1$に内分する点を$\mathrm{M}$,$1:t$に内分する点を$\mathrm{N}$としたとき,$\angle \mathrm{AOB}=3 \angle \mathrm{AOM}$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle \mathrm{ON}=\frac{1-t}{t}$であることを証明せよ.
(2)$x=\cos \angle \mathrm{AOB}$,$y=\cos \angle \mathrm{AOM}$とするとき,$x,\ y$を$t$を用いて表せ.
(3)$x=-y^2$が成り立つときの,$t$の値と辺$\mathrm{AB}$の長さを求めよ.
福井大学 国立 福井大学 2014年 第1問
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{OB}=1$を満たす二等辺三角形とする.$t$を$\displaystyle \frac{1}{2}<t<1$を満たす定数とし,辺$\mathrm{AB}$を$1:t$に内分する点を$\mathrm{P}$,$\angle \mathrm{AOP}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$k=\mathrm{OP}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$t$,$k$を用いて表せ.
(3)$\mathrm{AQ}=\mathrm{BP}$が成り立つとする.$k$を$t$を用いて表せ.また内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$t$を用いて表せ.
福井大学 国立 福井大学 2014年 第4問
以下の問いに答えよ.

(1)$p>1$,$q>1$のとき,不等式$p+q<pq+1$を証明せよ.
(2)$a>1$,$b>1$のとき,不等式$\sqrt{a+b-1}<\sqrt{a}+\sqrt{b}-1$を証明せよ.
(3)$a>1$,$b>1$,$c>1$のとき,不等式$\sqrt{a+b+c-2}<\sqrt{a}+\sqrt{b}+\sqrt{c}-2$を証明せよ.
福井大学 国立 福井大学 2014年 第4問
$f(x)=3 \sin x$,$g(x)=x(2+\cos x)$とするとき,以下の問いに答えよ.

(1)$0<x<\pi$のとき,$0<f(x)<g(x)$が成り立つことを証明せよ.
(2)$0 \leqq x \leqq \pi$の範囲で,$2$つの曲線$y=f(x)$,$y=g(x)$と直線$x=\pi$によって囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第3問
以下の問いに答えよ.

(1)$r$は自然数,$n$は$r$より大きい整数とする.$2$項係数$\comb{k+r}{r} (k=0,\ 1,\ \cdots,\ n-r)$の次の等式を示せ.
\[ \sum_{k=0}^{n-r} \comb{k+r}{r}=\comb{n+1}{r+1} \]
以下整数$n (n \geqq 2)$に対し,次の確率分布に従う確率変数$X$を考える.
\[ P(X=k)=\frac{\comb{k+1}{1}}{\comb{n+1}{2}} \quad (k=0,\ 1,\ \cdots,\ n-1) \]
(2)$X$の期待値$\mu_n=E(X)$を求めよ.また,$\displaystyle P(X \geqq m) \geqq \frac{1}{2}$を満たす最大の整数$m$を$M_n$とするとき,極限値$\displaystyle \lim_{n \to \infty} \frac{M_n}{\mu_n}$を求めよ.
山形大学 国立 山形大学 2014年 第3問
関数$f(x)$を$\displaystyle f(x)=\int_0^{\frac{\pi}{2}} |x-2t| \sin t \, dt$で定める($0 \leqq x \leqq \pi$).次の問に答えよ.

(1)次の不定積分を求めよ.ただし,$a>0$とする.
\[ \int t \sin at \, dt,\quad \int \sin^2 \frac{t}{2} \, dt \]
(2)$f(x)$の最小値を求め,そのときの$x$の値を求めよ.
(3)曲線$y=f(x)-f(0)$と$x$軸および直線$x=\pi$で囲まれた図形を$x$軸のまわりに回転して得られる回転体の体積$V$を求めよ.
和歌山大学 国立 和歌山大学 2014年 第1問
数列$\{a_n\}$,$\{b_n\}$が,$a_n=\sqrt{2n+1}-\sqrt{2n-1}$,$\displaystyle b_n=\frac{1}{\sqrt{2n-1}}$で定められている.このとき,次の問いに答えよ.

(1)$n \geqq 1$に対して,$b_{n+1}<a_n<b_n$が成り立つことを示せ.
(2)$\displaystyle 8<\sum_{k=1}^{40} b_k<9$が成り立つことを示せ.
和歌山大学 国立 和歌山大学 2014年 第3問
立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.辺$\mathrm{AD}$,$\mathrm{AB}$をそれぞれ$1:3$に内分する点を$\mathrm{P}$,$\mathrm{Q}$とする.辺$\mathrm{FG}$上に$\mathrm{FS}:\mathrm{SG}=t:(1-t) (0<t<1)$をみたす点$\mathrm{S}$をとる.また,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{S}$を通る平面と辺$\mathrm{BF}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{x}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{y}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{z}$とするとき,次の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{QR}}$を$\overrightarrow{x}$,$\overrightarrow{y}$,$\overrightarrow{z}$および$t$を用いて表せ.
(2)$\angle \mathrm{QRS}={120}^\circ$となるときの$t$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。