タグ「不等号」の検索結果

160ページ目:全4604問中1591問~1600問を表示)
高知大学 国立 高知大学 2014年 第3問
関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}(x+1)x & (-1 \leqq x \leqq 0 \text{のとき}) \\
-\displaystyle\frac{1}{2}x(x-1) & (0<x \leqq 1 \text{のとき}) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
とおくとき,次の問いに答えよ.

(1)$f(x)$は$x=0$で微分可能であることを示せ.
(2)関数$y=f(x)$のグラフをかけ.
(3)$y=f^\prime(x)$のグラフを$-1<x<1$の範囲でかき,$f^\prime(x)$が$x=0$で微分可能かどうかを理由をつけて述べよ.
(4)$y=f(x)$のグラフと$x$軸で囲まれた部分を,$x$軸のまわりに回転してできる立体の体積を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
関数
\[ f(x)=\int_{-a}^x (a-|t|) \, dt \]
を考える.次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$x \leqq 0$と$x \geqq 0$の場合に,関数$f(x)$を求めよ.
(2)関数$y=f(x)$のグラフをかけ.
(3)曲線$y=f(x)$上の点$\mathrm{A}$の$x$座標は負であり,点$\mathrm{A}$における曲線$y=f(x)$の接線の傾きが$-\sqrt{2}a$であるとき,点$\mathrm{A}$の座標を求めよ.さらに,点$\mathrm{A}$を通って$x$軸に平行な直線と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第4問
次の問いに答えよ.

(1)$0 \leqq \theta \leqq 2\pi$とする.関数
\[ y=2 \sin 2\theta-2 \sqrt{2}(\sin \theta+\cos \theta)+2 \]
について,$t=\sin \theta+\cos \theta$とおいて,$y$を$t$の関数で表せ.また,$y$の最大値,最小値とそのときの$\theta$の値を求めよ.
(2)$3$つの不等式
\[ \log_y (x^2-3x+2) \leqq 1,\quad 0<x \leqq 3,\quad 0<y<1 \]
を同時にみたす領域を$xy$平面上に図示せよ.
宮崎大学 国立 宮崎大学 2014年 第3問
$a>0$,$a \neq 1$,$b>0$とする.このとき,変数$x$の関数
\[ f(x)=4x^2+4x \log_ab+1 \]
について,次の各問に答えよ.

(1)$2$次方程式$f(x)=0$が重解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(2)$2$次方程式$f(x)=0$が$\displaystyle 0<x<\frac{1}{2}$の範囲内にただ$1$つの解を持つようなすべての$a,\ b$を,座標平面上の点$(a,\ b)$として図示せよ.
(3)放物線$y=f(x)$の頂点の座標を$(X,\ Y)$とする.点$(a,\ b)$が$(2)$の条件を満たしながら動くとき,点$(X,\ Y)$の軌跡を座標平面上に図示せよ.
九州工業大学 国立 九州工業大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x-x \cos x}{\displaystyle\frac{2}{\pi}-\cos x}$,$\displaystyle g(x)=\frac{1}{2}x+\frac{\pi}{4}$とする.$\displaystyle \frac{\pi}{2}<x<\pi$のとき,以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f^\prime(x)>0$を示せ.
(3)$\displaystyle \frac{\pi}{2}<f(x)<\pi$を示せ.
(4)$f(x)<g(x)$を示せ.
宮城教育大学 国立 宮城教育大学 2014年 第1問
$1 \leqq n<m$をみたす自然数の組を$(m,\ n)$と表し,これらを次の規則で順番に並べる.

(i) $1$番目は組$(2,\ 1)$とする.
(ii) $k$番目が組$(m,\ n)$のとき,
$n<m-1$ならば,$k+1$番目は組$(m,\ n+1)$とし,
$n=m-1$ならば,$k+1$番目は組$(m+1,\ 1)$とする.

例えば,$2$番目の組は$(3,\ 1)$,$3$番目の組は$(3,\ 2)$,$4$番目の組は$(4,\ 1)$,$5$番目の組は$(4,\ 2)$となる.次の問いに答えよ.

(1)$20$番目の自然数の組を求めよ.
(2)$m$を$2$以上の自然数とするとき,組$(m,\ 1)$は何番目かを答えよ.
(3)$1 \leqq n<m \leqq 5$をみたすすべての組$(m,\ n)$を考える.組$(m,\ n)$から分数$\displaystyle \frac{n}{m}$を作るとき,これらの分数の総和を求めよ.
(4)$l$を$2$以上の自然数とする.$1 \leqq n<m \leqq l$をみたすすべての組$(m,\ n)$から作る分数$\displaystyle \frac{n}{m}$の総和が$\displaystyle \frac{4753}{2}$であるとき,$l$の値を求めよ.
山形大学 国立 山形大学 2014年 第1問
座標平面上の点$(-2,\ 1)$を$\mathrm{A}$,点$\displaystyle \left( a,\ \frac{1}{4}a^2 \right)$を$\mathrm{B}$とする.ただし,$0<a<2$とする.また,$\displaystyle y=\frac{1}{4}x^2$で表される放物線を$C$とする.このとき,次の問に答えよ.

(1)放物線$C$と線分$\mathrm{AB}$で囲まれる部分の面積$S$を$a$の式で表せ.
(2)直線$\mathrm{AB}$が直線$x=2$と交わる点を$\mathrm{D}$とする.放物線$C$と線分$\mathrm{BD}$および直線$x=2$で囲まれる部分の面積$T$を$a$の式で表せ.
(3)次の条件によって定められる数列$\{p_n\},\ \{q_n\}$の一般項を求めよ.

(i) $p_1=1,\ p_n>0,$
(ii) $\displaystyle q_n=\frac{1}{4}{p_n}^2,$
(iii) $p_n-p_{n+1}=2 \sqrt{q_nq_{n+1}}$

(4)$a=p_n$のとき,$(1)$と$(2)$で求めた$S$と$T$に対し,$T>S$となる最小の$n$を求めよ.
宮崎大学 国立 宮崎大学 2014年 第1問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
九州工業大学 国立 九州工業大学 2014年 第1問
放物線$C:y=ax^2+bx+c (a>0)$を考える.$2$本の直線
\[ \ell_1:y=\frac{5}{2}x \quad \text{および} \quad \ell_2:y=-\frac{1}{2}x \]
は$C$に接するものとする.$C$と$\ell_1$の接点を$\mathrm{P}$,$C$と$\ell_2$の接点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\alpha,\ \beta,\ \gamma (\alpha \neq 0)$を定数とするとき,$2$次方程式$\alpha x^2+\beta x+\gamma=0$が重解を持つための条件を求めよ.
(2)$b$の値を求めよ.また,$c$を$a$を用いて表せ.
(3)$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$a$を用いて表せ.
(4)$a$の値にかかわらず$C$の頂点は直線$m$上にある.$m$の方程式を求めよ.
(5)$C$と$\ell_1$,$\ell_2$で囲まれた部分の面積を$a$を用いて表せ.
九州工業大学 国立 九州工業大学 2014年 第4問
点$\mathrm{P}$は次の$①$,$②$,$③$の規則に従って数直線上を動く.

\mon[$①$] 時刻$0$で,$\mathrm{P}$は整数座標点$0$から$10$のいずれかの位置$i (0 \leqq i \leqq 10)$にある.
\mon[$②$] 時刻$t (t=0,\ 1,\ 2,\ \cdots)$に位置$i (1 \leqq i \leqq 9)$にある$\mathrm{P}$は,$t+1$には確率$\displaystyle p \left( 0<p<\frac{1}{2} \right)$で位置$i+1$に,確率$1-p$で位置$i-1$に移動する.
\mon[$③$] 時刻$t$に位置$0$または$10$にある$\mathrm{P}$は,$t+1$にもその位置に留まる.

以下の問いに答えよ.

(1)$\mathrm{P}$が時刻$0$で位置$2$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
(2)$\mathrm{P}$が時刻$0$で位置$1$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
時刻$0$で位置$i$にある$\mathrm{P}$が,いずれかの時刻で位置$0$に到達する確率を$q_i$とする.ただし,$q_0=1$,$q_{10}=0$である.$1 \leqq i \leqq 9$のとき,$q_{i+1}$,$q_i$,$q_{i-1}$の間には$q_i=pq_{i+1}+(1-p)q_{i-1}$の関係が成り立つ.
(3)$q_{i+1}-q_i=[ ](q_i-q_{i-1})$である.空欄に入る適切な数または式を求めよ.
(4)$q_i$を$q_1$と$p$を用いて表せ.
(5)$q_1$を求め,$q_i$を$p$を用いて表せ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。