タグ「不等号」の検索結果

16ページ目:全4604問中151問~160問を表示)
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第6問
数直線上の点$\mathrm{Q}$は,はじめは原点$x=0$にあり,さいころを投げるたびに以下のルールに従って移動する.$\mathrm{Q}$が$x=a$にあるとき,
\begin{itemize}
出た目が$1$ならば$x=a$にとどまる.
出た目が$2,\ 3$ならば$x=a+1$へ動く.
出た目が$4,\ 5,\ 6$ならば$x=0$に戻る($a=0$ならば動かない).
\end{itemize}

(1)整数$a \geqq 0$に対して,さいころを$3$回投げたとき,$\mathrm{Q}$が$x=a$にある確率を求めよ.
(2)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=0$にある確率を求めよ.
(3)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=1$にある確率を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第1問
自然数$n$に対して,$n$のすべての正の約数($1$と$n$を含む)の和を$S(n)$とおく.例えば,$S(9)=1+3+9=13$である.このとき以下の各問いに答えよ.

(1)$n$が異なる素数$p$と$q$によって$n=p^2q$と表されるとき,$S(n)=2n$を満たす$n$をすべて求めよ.
(2)$a$を自然数とする.$n=2^a-1$が$S(n)=n+1$を満たすとき,$a$は素数であることを示せ.
(3)$a$を$2$以上の自然数とする.$n=2^{a-1}(2^a-1)$が$S(n) \leqq 2n$を満たすとき,$n$の$1$の位は$6$か$8$であることを示せ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第1問
次の$[ ]$の中を適当に補え.

(1)$x$に関する方程式$(k^2-4k+3)x^2-4x+1=0$が異なる$2$つの実数解を持つような整数$k$は,全部で$[ ]$個である.
(2)不等式$\displaystyle \log_4(7x+1)<\frac{1}{2}+\frac{1}{2} \log_2 (2x+9)$を解くと$[ ]$である.
(3)$0 \leqq \theta \leqq \pi$のとき,$4 \sin^3 \theta+\cos^2 \theta-2 \sin \theta+1$の最大値$M$,最小値$m$を求めると$(M,\ m)=[ ]$である.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第1問
自然数$n$に対して,$n$のすべての正の約数($1$と$n$を含む)の和を$S(n)$とおく.例えば,$S(9)=1+3+9=13$である.このとき以下の各問いに答えよ.

(1)$n$が異なる素数$p$と$q$によって$n=pq$と表されるとき,$S(n)=24$を満たす$n$をすべて求めよ.
(2)$n$が異なる素数$p$と$q$によって$n=pq$と表されるとき,$S(n) \geqq 2n$を満たす$n$をすべて求めよ.
(3)$n$が異なる素数$p$と$q$によって$n=p^2q$と表されるとき,$S(n) \geqq 2n$を満たす$n$をすべて求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
大阪大学 国立 大阪大学 2016年 第4問
正の整数$n$に対して
\[ S_n=\sum_{k=1}^n \frac{1}{k} \]
とおき,$1$以上$n$以下のすべての奇数の積を$A_n$とする.

(1)$\log_2 n$以下の最大の整数を$N$とするとき,$2^NA_nS_n$は奇数の整数であることを示せ.
(2)$\displaystyle S_n=2+\frac{m}{20}$となる正の整数の組$(n,\ m)$をすべて求めよ.
(3)整数$a$と$0 \leqq b<1$をみたす実数$b$を用いて,
\[ A_{20}S_{20}=a+b \]
と表すとき,$b$の値を求めよ.
徳島大学 国立 徳島大学 2016年 第1問
座標平面上の曲線$\displaystyle \frac{x^2}{4}+y^2=1 (y \geqq 0)$を$C$とする.実数$t>1$に対して,点$(0,\ t)$を通り第$1$象限の点$(a,\ b)$で曲線$C$に接する直線を$\ell$とする.

(1)$x$軸,$y$軸と$\ell$で囲まれた部分の面積を$S_1(t)$とする.$t$が$t>1$の範囲を動くとき,$S_1(t)$の最小値を求めよ.
(2)曲線$C$と直線$y=b$で囲まれた部分の面積を$S_2(t)$とする.$t$が$t>1$の範囲を動くとき,導関数$S_2^\prime(t)$の最大値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。