タグ「三角関数」の検索結果

2ページ目:全14問中11問~20問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
北海道医療大学 私立 北海道医療大学 2010年 第2問
累乗根,対数,三角関数について以下の問に答えよ.

(1)次の式を簡単にせよ.
\[ \begin{array}{lll}
① \sqrt[8]{16^2} & & ② \sqrt[3]{4} \div \sqrt{8} \times \sqrt[4]{32} \\
③ \log_3 81 & & ④ (\log_23+\log_49)(\log_34+\log_92)
\end{array} \]
(2)$0^\circ<\theta<{90}^\circ$で,$\displaystyle \frac{1}{\cos \theta}-\frac{1}{\sin \theta}=\sqrt{3}$であるとする.

\mon[$(2$-$1)$] $x=\sin \theta \cos \theta$とするとき,$x$に関する$2$次方程式を求めよ.
\mon[$(2$-$2)$] $\sin \theta \cos \theta$の値を求めよ.
\mon[$(2$-$3)$] 次の値を求めよ.
\[ ① \sin \theta \qquad ② \tan \theta \]
\mon[$(2$-$4)$] 次の式の値を求めよ.
\[ ① \frac{1}{\cos {60}^\circ}-\frac{1}{\sin {60}^\circ} \qquad ② \frac{1}{\cos {75}^\circ}-\frac{1}{\sin {75}^\circ} \]
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第4問
以下の問いに答えよ.

(1)三角関数の加法定理を用いて,次の等式を証明せよ.
\[ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2}\sin \frac{\alpha-\beta}{2} \]
(2)次の不等式を証明せよ.$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$ \\
必要ならば,実数$\theta$に対して成り立つ不等式$|\sin \theta| \leqq |\theta|$を用いてよい.
(3)数列$\{a_n\}$を,次の条件によって定める.
\[ a_1=\frac{\pi}{2},\quad a_{n+1}=\frac{1}{2}\sin a_n+\frac{\pi}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の不等式を証明せよ.$\displaystyle |a_{n+2|-a_{n+1}} \leqq \frac{1}{2} |a_{n+1|-a_n} \ (n=1,\ 2,\ 3,\ \cdots)$
(4)(3)の数列$\{a_n\}$に対して,次の不等式を証明せよ.$\displaystyle |a_{n+1|-a_n} \leqq \left( \frac{1}{2} \right)^n$ \ $(n=1,\ 2,\ 3,\ \cdots)$
スポンサーリンク

「三角関数」とは・・・

 まだこのタグの説明は執筆されていません。