タグ「三角比」の検索結果

190ページ目:全1924問中1891問~1900問を表示)
日本福祉大学 私立 日本福祉大学 2010年 第4問
以下の問いに答えよ.

$y=\sin x (0 \leqq x<2\pi) \cdots\cdots①$
$y=\cos x (0 \leqq x<2\pi) \cdots\cdots②$

(1)$①$式と$②$式で表される$2$曲線の交点の座標を求めよ.
(2)$①$式と$②$式で表される$2$曲線で囲まれる図形の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第1問
次の空欄$[ア]$~$[カ]$を適当に補え.

(1)円$x^2+y^2=3$と直線$x-y+k=0$が異なる$2$点で交わるとき,定数$k$の値の範囲は$[ア]$である.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,方程式$\cos 2x=5 \sin x-2$を解くと$x=[イ]$である.
(3)$t$を実数とする.$x$の$2$次関数$\displaystyle f(x)=\frac{1}{2}x^2-2tx+t$の最小値を$k$とする.$k$を最大にする$t$の値は$t=[ウ]$であり,そのときの$k$の値は$k=[エ]$である.
(4)$f(x)=x^3+3x^2$,$g(x)=2x^2$とする.$y=g(x)$のグラフを$x$軸方向に$-1$,$y$軸方向に$2$平行移動して得られるグラフの方程式を,$y=h(x)$とする.このとき,$y=h(x)$のグラフと$y=f(x)$のグラフの交点のうち,$x$座標の最も大きいものは$(x,\ y)=([オ],\ [カ])$である.
神奈川大学 私立 神奈川大学 2010年 第1問
次の空欄$[$\mathrm{(a)]$}$~$[$\mathrm{(g)]$}$を適当に補え.

(1)$\displaystyle x=\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}},\ y=\frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$のとき,$x+y$の値は$[$\mathrm{(a)]$}$である.
(2)$2$次方程式$2x^2+3x+k=0$において,$2$つの解の比が$1:2$であるとき,定数$k$の値は$[$\mathrm{(b)]$}$である.
(3)${64}^{1.5} \times {32}^{-0.4}=[$\mathrm{(c)]$}$である.
(4)$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=2$,$|\overrightarrow{a}-\overrightarrow{b}|=2 \sqrt{2}$を満たすとき,$|\overrightarrow{a}+\overrightarrow{b}|=[$\mathrm{(d)]$}$である.
(5)$\displaystyle \left( 2x-\frac{1}{4} \right)^{10}$の展開式における$x^6$の係数は$[$\mathrm{(e)]$}$である.
(6)$0 \leqq \theta<2\pi$のとき,関数$y=\sin \theta+\sqrt{3} \cos \theta+2$の最小値は$[$\mathrm{(f)]$}$であり,そのときの$\theta$の値は$[$\mathrm{(g)]$}$である.
玉川大学 私立 玉川大学 2010年 第1問
次の$[ ]$を埋めよ.

(1)曲線$y=x^2+2x$と$x$軸とで囲まれる部分の面積は$\displaystyle \frac{[ ]}{[ ]}$である.

(2)直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=3$,$\mathrm{CA}=4$,$\angle \mathrm{BAC}=\theta$とするとき,$\displaystyle \cos \theta=\frac{[ ]}{[ ]}$,$\displaystyle \sin \theta=\frac{[ ]}{[ ]}$,$\displaystyle \tan \theta=\frac{[ ]}{[ ]}$である.

(3)次の計算をせよ.


(i) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{2}}}{\sqrt{2}-\displaystyle\frac{1}{\sqrt{2}}}=\sqrt{[ ]}-[ ]$

(ii) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{5}}}{\sqrt{5}-\displaystyle\frac{1}{\sqrt{5}}}=\frac{\sqrt{[ ]}-[ ]}{[ ]}$

(iii) $\displaystyle \frac{1}{1-\displaystyle\frac{1}{1+\sqrt{2}+\sqrt{3}}}=[ ]-\sqrt{[ ]}+\sqrt{[ ]}$


(4)$x \neq 0$とするとき,$\displaystyle k=x+\frac{1}{x}$のとり得る値の範囲は,$k \leqq [ ]$,または$k \geqq [ ]$である.
広島工業大学 私立 広島工業大学 2010年 第1問
次の$[ ]$に適する答を記入せよ.

(1)等式$xy+3x-y-3=5$を満たす自然数$x,\ y$は$x=[ ]$,$y=[ ]$である.
(2)$\mathrm{O}$を原点とする座標平面に$2$点$\mathrm{A}(\cos \theta,\ \sin \theta)$と$\mathrm{B}(\cos 2\theta,\ \sin 2\theta) (0 \leqq \theta \leqq \pi)$がある.このとき,ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になるのは$\theta=[ ]$のときであり,$|\overrightarrow{\mathrm{AB}}|=1$となるのは$\theta=[ ]$のときである.
(3)$a,\ b$を実数の定数とする.方程式$x^3+ax+b=0$の$1$つの解が$1+\sqrt{2}i$であるとき,$a=[ ]$である.また,この方程式の実数解は$[ ]$である.ただし,$i$は虚数単位とする.
広島工業大学 私立 広島工業大学 2010年 第4問
平行四辺形$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OC}=1$とし,$\angle \mathrm{AOC}$は鋭角とする.また,辺$\mathrm{OA}$上に点$\mathrm{P}$をとり,$\displaystyle \frac{\mathrm{OP}}{\mathrm{OA}}=t$とする.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{c}$とする.このとき,ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}$と$\overrightarrow{c}$および実数$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$\cos \theta$を$t$を用いて表せ.ただし,$\angle \mathrm{AOC}=\theta$とする.
(3)三角形$\mathrm{OCP}$の面積が平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{1}{5}$であるとき,$t$の値を求めよ.さらに,$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$(2)$で定めた角$\theta$の大きさを求めよ.
神戸薬科大学 私立 神戸薬科大学 2010年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.

(1)$x+y=\sqrt{3}$,$x^2+y^2=5$のとき,$x^3+y^3$は$[ ]$であり,$\displaystyle \frac{y}{x^2}+\frac{x}{y^2}$は$[ ]$である.
(2)次の問いに答えよ.

(i) $\sin 1$,$\sin 2$,$\sin 3$,$\sin 4$のなかで,負となるものは$[ ]$である.また,正となるものの最小値は$[ ]$であり,最大値は$[ ]$である.
(ii) $A,\ B (A \neq B)$がいずれも鋭角のとき,次の$3$つの数の最小値は$[ ]$,最大値は$[ ]$である.
\[ \sin \frac{A+B}{2},\quad \sin \frac{A}{2}+\sin \frac{B}{2},\quad \frac{\sin A+\sin B}{2} \]
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第1問
次の設問に答えなさい.

(1)次の計算をしなさい.
\[ (8a^3b^2)(2a^2b)^2 \left( -\frac{1}{4}ab^2 \right)^3 \]
(2)次の$(ⅰ)$~$(ⅲ)$の場合について,それぞれ$x$を求めなさい.ただし,${0}^\circ \leqq x \leqq {90}^\circ$とします.

(i) $\sin {58}^\circ=\cos x$
(ii) $\cos {169}^\circ=-\cos x$
(iii) $\displaystyle \tan {64}^\circ=\frac{1}{\tan x}$

(3)$0<x<y$のとき,次の式を簡単にしなさい.
\[ \sqrt{x^2-2xy+y^2}+\sqrt{x^2-4xy+4y^2} \]
首都大学東京 公立 首都大学東京 2010年 第2問
原点をOとする座標平面上のベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$は$|\overrightarrow{\mathrm{OA}}|=\sqrt{17},\ |\overrightarrow{\mathrm{OB}}|=\sqrt{10}$を満たし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$が$\displaystyle \cos \theta =- \frac{13}{\sqrt{170}}$を満たしている.ベクトル$\overrightarrow{u},\ \overrightarrow{v}$を$\displaystyle \overrightarrow{u} = \frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2},\ \overrightarrow{v}=\frac{\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}}{2}$で定める.このとき,以下の問いに答えなさい.

(1)長さ$|\overrightarrow{u}|,\ |\overrightarrow{v}|$と内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求めなさい.
(2)実数$t$に対して$\overrightarrow{\mathrm{OP}} = t \overrightarrow{u}+(1-t)\overrightarrow{v}$とおく.長さ$|\overrightarrow{\mathrm{OP}}|$を最小にする$t$の値を求めなさい.また,そのときの長さ$|\overrightarrow{\mathrm{OP}}|$を求めなさい.
大阪市立大学 公立 大阪市立大学 2010年 第3問
関数$f(x) = \sin 2x+3 \sin x$について,次の問いに答えよ.

(1)導関数$f^{\, \prime}(x)$の最大値,最小値を求めよ.
(2)$a$を定数として,$g(x) = f(x)-ax$と定義するとき,$g(x)$が極値をもつような$a$の値の範囲を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。