タグ「三角比」の検索結果

10ページ目:全1924問中91問~100問を表示)
島根大学 国立 島根大学 2016年 第4問
$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$xy$平面上の曲線$\displaystyle \frac{x^2}{\cos^2 \alpha}+\frac{y^2}{\sin^2 \alpha}=\frac{1}{\cos^2 \alpha}$の$x \geqq 0$,$y \geqq 0$の部分を$C(\alpha)$とし,曲線$C(\alpha)$と$y$軸,および直線$y=x$で囲まれた図形を$D(\alpha)$で表す.次の問いに答えよ.

(1)曲線$C(\alpha)$と直線$y=x$の交点の座標を求めよ.
(2)図形$D(\alpha)$の面積$S(\alpha)$を求めよ.
(3)図形$D(\alpha)$を$x$軸のまわりに$1$回転してできる立体の体積$V(\alpha)$を求めよ.
(4)$(2)$,$(3)$で求めた$S(\alpha)$,$V(\alpha)$に対して,$\displaystyle \lim_{\alpha \to +0} \frac{\{V(\alpha)\}^2}{\{S(\alpha)\}^3}$を求めよ.
山梨大学 国立 山梨大学 2016年 第1問
次の問いに答えよ.

(1)$3$または$7$で割り切れる$100$以下の自然数の和を求めよ.
(2)座標平面上で,不等式$(2x^2-y)(x^2+y^2-3) \leqq 0$が表す領域を図示せよ.

(3)$\left\{ \begin{array}{l}
2 \sin \alpha+2 \cos \beta=1 \\
2 \cos \alpha-2 \sin \beta=\sqrt{3}
\end{array} \right.$とする.このとき,$\alpha$と$\beta$を求めよ.ただし,$0 \leqq \alpha<2\pi$かつ$0 \leqq \beta<2\pi$とする.
(4)$1 \leqq x \leqq 25$,$26x+7y=2$を満たす整数$x,\ y$の組をすべて求めよ.
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2016年 第3問
関数$f(x),\ g(x)$は
\[ \left\{ \begin{array}{l}
f(3x)+g(2x)=\sin 6x \quad \cdots\cdots (*) \\
f^\prime(3x)+g^\prime(2x)=\sin 6x \phantom{\frac{[ ]}{[ ]}} \\
f(0)=3
\end{array} \right. \]
を満たしている.下の問いに答えなさい.

(1)等式$(*)$の両辺を$x$で微分しなさい.
(2)$f^\prime(3x)$を求めなさい.
(3)$f(x),\ g(x)$を求めなさい.
旭川医科大学 国立 旭川医科大学 2016年 第1問
$\displaystyle I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)$\displaystyle \tan x \leqq x+1-\frac{\pi}{4} \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$が成り立つことを示せ.
(2)$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
(3)$I_n+I_{n+2}$の値を$n$を用いて表せ.
(4)$(3)$までの結果を用いて,無限級数$\displaystyle \sum_{n=1}^\infty \frac{{(-1)}^{n+1}}{2n}$の和を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2016年 第3問
$xy$平面上において,媒介変数$\theta (0 \leqq \theta \leqq \pi)$によって$x=a(2 \cos \theta+\cos 2\theta+1)$,$y=a(2 \sin \theta+\sin 2\theta)$と表される下図の曲線について考える.ただし,$a$は正の定数とする.以下の問いに答えよ.

(1)$\displaystyle \frac{dx}{d\theta},\ \frac{dy}{d\theta}$を求めよ.
(2)$x$が最大となる点を点$\mathrm{A}$,$y$が最大となる点を点$\mathrm{B}$,$x$が最小となる点を点$\mathrm{C}$と定める.このとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標および各点での媒介変数$\theta$の値を求めよ.
(3)曲線と$x$軸で囲まれる図形の面積を求めよ.
(図は省略)
帯広畜産大学 国立 帯広畜産大学 2016年 第1問
原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円$C$上に点$\mathrm{P}$をとり,点$\mathrm{P}$における円$C$の接線$L$の方程式を$y=ax+b$とする.接線$L$は,$x$軸と点$\mathrm{A}$で,$y$軸と点$\mathrm{B}$で交わり,$\triangle \mathrm{AOB}$の面積を$S$とする.また,$x$軸の正の向きを始線とし,それと直線$\mathrm{OP}$のなす正の角を$\theta$で表す.ただし,
\[ a>0,\quad b>0 \quad \cdots\cdots \quad (*) \]
とする.次の各問に答えなさい.

(1)$(ⅰ)$ 直線$\mathrm{OP}$の傾きを$a$を用いて表しなさい.
$(ⅱ)$ $a,\ b$を$\sin \theta$を用いて表しなさい.
$(ⅲ)$ $S$を$\sin 2\theta$を用いて表しなさい.
(2)$\displaystyle \theta=\frac{2 \pi}{3}$とする.
$(ⅰ)$ $a,\ b,\ S$の値をそれぞれ求めなさい.
$(ⅱ)$ 点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
$(ⅲ)$ $\tan 2\theta$の値を求めなさい.
(3)$\theta<2\pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$と$S$のそれぞれの値を求めなさい.
(4)$\theta<200 \pi$とする.$S$が最小になるとき,条件$(*)$の下で$\theta$がとりうるすべての値の和を$\pi$を用いて表しなさい.
愛媛大学 国立 愛媛大学 2016年 第1問
次の問いに答えよ.

(1)$2m^2-n^2-mn-m+n=18$を満たす自然数$m,\ n$を求めよ.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$のとき$\displaystyle \log_{\cos \theta} \left( \tan^2 \theta+\frac{\tan \theta}{\cos \theta}+\frac{1}{3} \right)=-2$を満たす$\theta$を求めよ.
(3)袋の中に$1,\ 2,\ 3,\ 4,\ 5$の数字が$1$つずつ書かれた$5$個の玉が入っている.$5$人が順にこの袋の中から玉を$1$個ずつ取り出し,玉に書かれた数字を記録する.この操作が終了したら,すべての玉を袋の中に戻し,同じ操作をもう一度行う.このとき,$1$回目と$2$回目に取り出した玉に書かれた数字が同じであるという人がちょうど$3$人になる確率を求めよ.
(4)$1 \leqq x \leqq 2$とする.関数$\displaystyle f(x)=\int_1^2 |t-x| \, dt$を最小にする$x$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。