タグ「三角形」の検索結果

62ページ目:全1576問中611問~620問を表示)
京都薬科大学 私立 京都薬科大学 2014年 第2問
次の$[ ]$にあてはまる数を記入せよ.

$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さを,それぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表す.
$\displaystyle \cos A=\frac{24}{25}$,$\displaystyle \cos B=\frac{20}{29}$,$c=92$のとき,$\sin A=[ア]$であり,$\sin B=[イ]$である.したがって,$\sin C=[ウ]$,$\cos C=[エ]$となる.これより$a=[オ]$,$b=[カ]$である.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{BM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AP}}=x \overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BP}}=y \overrightarrow{\mathrm{BM}}$($x,\ y$は実数)とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=(1-[コ]x) \overrightarrow{a}+\frac{[サ]}{[シ]} x \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OP}}$を$y,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ス]}{[セ]} y \overrightarrow{a}+(1-[ソ] y) \overrightarrow{b}$である.
(3)$x,\ y$の値はそれぞれ$\displaystyle x=\frac{[タ]}{[チツ]},\ y=\frac{[テ]}{[トナ]}$である.
(4)$\triangle \mathrm{OPN}$の面積は$\triangle \mathrm{OAB}$の面積の$\displaystyle \frac{[ニヌ]}{[ネノ]}$倍である.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
愛知工業大学 私立 愛知工業大学 2014年 第2問
$x>0$において,つねに正の値をとる連続な関数$f(x)$がある.$xy$平面において,$0<a<b$をみたすすべての実数$a,\ b$に対して,曲線$y=f(x)$,$x$軸,直線$x=a$および直線$x=b$で囲まれた部分の面積$S$は
\[ S=\frac{1}{a}-\frac{1}{b} \]
であるとする.

(1)$f(x)$を求めよ.
(2)$c>0$とする.曲線$y=f(x)$上の点$(c,\ f(c))$における接線,$x$軸および$y$軸で囲まれた三角形の面積を$T$とするとき,$\displaystyle \lim_{c \to \infty}T$を求めよ.
近畿大学 私立 近畿大学 2014年 第3問
$xy$平面上の点$\mathrm{P}$の$x$座標,$y$座標をそれぞれ$\mathrm{P}_x$,$\mathrm{P}_y$と書く.$\mathrm{P}_x$,$\mathrm{P}_y$がともに整数であるような点$\mathrm{P}$を格子点という.次の問に答えよ.

(1)原点$\mathrm{O}$と点$\mathrm{A}(18,\ 12)$を結ぶ線分$\mathrm{OA}$がある.線分$\mathrm{OA}$上にある格子点の個数を求めよ.ただし両端$\mathrm{O}$,$\mathrm{A}$も線分$\mathrm{OA}$上の点とする.
(2)$\mathrm{O}$,$\mathrm{A}$と点$\mathrm{B}(18,\ 0)$を頂点とする$\triangle \mathrm{OAB}$の周または内部にある格子点の個数を求めよ.
(3)$n$を正の整数とする.$2$点$\mathrm{C}(n,\ 0)$,$\mathrm{D}(0,\ n)$を考える.格子点$\mathrm{P}$が$\triangle \mathrm{OCD}$の周または内部を動くとき$\mathrm{P}_x$の総和を$m_1$とおく.また$|\mathrm{P|_x-\mathrm{P}_y}$の総和を$n$が偶数のとき$m_2$,$n$が奇数のとき$m_3$とする.$m_1$,$m_2$,$m_3$を$n$の式で表せ.ただし解答は$an^3+bn^2+cn+d$のように$n$の次数について整理し,降べきの順(次数の高い順)に書くこと.
龍谷大学 私立 龍谷大学 2014年 第3問
三角形$\mathrm{OAB}$において,$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\mathrm{AB}=\sqrt{2}$とする.$\angle \mathrm{O}$の$2$等分線上の点$\mathrm{P}$を考える.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めなさい.
(2)$\mathrm{OP}=1$とする.実数$s,\ t$を使って$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$と表すとき,$s,\ t$を求めなさい.
京都薬科大学 私立 京都薬科大学 2014年 第3問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}=\theta$とする.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{C}$とする.次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[ク]$~$[サ]$には整数を記入しなさい.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}} \]
となる.
(2)直線$\mathrm{OC}$上に点$\mathrm{P}$をとり,さらに点$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$および$\cos \theta$を用いて表すと,
\[ \overrightarrow{\mathrm{OP}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\mathrm{OC}:\mathrm{CP}=3:1$となるならば,$\cos \theta=[オ]$である.
(3)辺$\mathrm{OB}$上に点$\mathrm{D}$を$\mathrm{OD}:\mathrm{DB}=1:3$となるようにとる.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\triangle \mathrm{OAQ}$,$\triangle \mathrm{QAC}$,$\triangle \mathrm{OQD}$および四角形$\mathrm{QCBD}$の面積をそれぞれ,$S_1,\ S_2,\ S_3,\ S_4$とすると,$S_1:S_2:S_3:S_4=[ク]:[ケ]:[コ]:[サ]$となる.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ -1)$をとる.点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円$C$を考える.$C$上の点で,第$1$象限にある点を$\mathrm{P}$とし,$\angle \mathrm{POA}=\theta$とする.

(1)$\displaystyle \angle \mathrm{OPA}=\frac{\pi}{[ケ]}$であり,$\displaystyle \triangle \mathrm{POA}=\frac{1}{[コ]} \sin \theta \cos \theta$である.
(2)四辺形$\mathrm{OBAP}$の面積は$\displaystyle \frac{1}{[サ]}+\frac{1}{[シ]} \sin 2\theta$である.
(3)$\displaystyle \triangle \mathrm{POB}=\frac{1}{[ス]}+\frac{1}{[セ]} \cos 2\theta$である.
(4)$\triangle \mathrm{PBA}$の面積を$S$とすると,$\displaystyle S=\frac{1}{[ソ]}+\frac{\sqrt{[タ]}}{[チ]} \sin \left( 2\theta-\frac{\pi}{[ツ]} \right)$であり,$S$は$\displaystyle \theta=\frac{[テ]}{[ト]} \pi$で最大値$\displaystyle \frac{1+\sqrt{[ナ]}}{[ニ]}$をとる.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。