タグ「三角形」の検索結果

60ページ目:全1576問中591問~600問を表示)
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
正四面体$\mathrm{OABC}$において辺$\mathrm{OA}$の中点を$\mathrm{D}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$m:(1-m)$に内分する点を$\mathrm{F}$とする.ただし,$m$は$0<m<1$を満たす実数の定数とする.$\mathrm{E}$から$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$の定める平面に垂線$\mathrm{EH}$を下ろし,直線$\mathrm{OH}$と線分$\mathrm{DF}$の交点を$\mathrm{I}$とする.三角形$\mathrm{ODE}$の面積は$\displaystyle \frac{9 \sqrt{3}}{4}$であり,四面体$\mathrm{ODEF}$の体積は正四面体$\mathrm{OABC}$の体積の$\displaystyle \frac{5}{54}$倍である.このとき,

(1)正四面体$\mathrm{OABC}$の一辺の長さは$[$63$] \sqrt{[$64$]}$であり,体積は$[$65$][$66$] \sqrt{[$67$]}$である.
(2)$\displaystyle m=\frac{[$68$]}{[$69$]}$である.
(3)$\overrightarrow{\mathrm{OI}}$を$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OF}}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OI}}=\frac{[$70$][$71$]}{[$72$][$73$]} \overrightarrow{\mathrm{OD}}+\frac{[$74$]}{[$75$][$76$]} \overrightarrow{\mathrm{OF}}$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)等差数列$\{a_n\}$は,初項から第$5$項までの和は$50$で,$a_5=16$であるとする.このとき,一般項$a_n$は,$a_n=[ア]$となり,初項から第$n$項までの和$S_n$は$S_n=[イ]$となる.
(2)$(x+1)^8 (x-1)^4$を展開したとき,$x^{10}$の項の係数は$[ウ]$である.また,$(x^2+x+1)^6$を展開したとき,$x^{10}$の項の係数は$[エ]$である.
(3)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=60^\circ$,$\mathrm{AB}=6$,$\mathrm{AC}=7$のとき,三角形$\mathrm{ABC}$の面積$S$は$S=[オ]$,辺$\mathrm{BC}$の長さは$\mathrm{BC}=[カ]$,三角形$\mathrm{ABC}$の外接円の半径$R$は$R=[キ]$である.
(4)$12^n$の正の約数の個数が$28$個となるような自然数$n$は,$n=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)座標平面上の$3$点$\mathrm{A}(4,\ 8)$,$\mathrm{O}(0,\ 0)$,$\mathrm{C}(12,\ 0)$を頂点とする三角形$\triangle \mathrm{AOC}$に接する正方形を,一辺が$\mathrm{OC}$上にあり,$2$頂点が三角形の他の辺上にあるようにとる.このとき正方形の一辺の長さは
\[ \frac{[$1$][$2$]}{[$3$][$4$]} \]
である.
(2)$u,\ v$を$0<u<2$,$0<v$なる実数とするとき
\[ (u-v)^2+\left( \sqrt{4-u^2}-\frac{18}{v} \right)^2 \]

\[ u=\sqrt{[$5$]},\quad v=[$6$] \sqrt{[$7$]} \]
のとき,最小値$[$8$][$9$]$をとる.(ヒント:平面上の$2$点の距離を考える.)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3+1=0$の$-1$でない解の$1$つを$\alpha$とするとき,
\[ (3+7 \alpha)(7+3 \alpha)-4(1+\alpha^2)=[ア] \alpha \]
となる.
(2)三角形$\mathrm{ABC}$において,
\[ \mathrm{AB}=2,\quad \angle \mathrm{ACB}=\frac{\pi}{4},\quad \angle \mathrm{BAC}=\frac{\pi}{3} \]
であるとき,$\mathrm{AC}=[イ]$である.
(3)$X=\left( \begin{array}{rr}
2 & 1 \\
-2 & -1
\end{array} \right)$,$Y=\left( \begin{array}{rr}
-3 & 0 \\
0 & -3
\end{array} \right)$および自然数$n$に対し,
\[ 3X^n-5X^3Y+X^2Y^2+XY^3+Y^n=\left( \begin{array}{cc}
[ウ] & [エ] \\
[オ] & [カ]
\end{array} \right) \]
となる.
(4)$a,\ b$を$a>0$,$b>1$となる実数とする.放物線$y=-ax^2+b$と円$x^2+y^2=1$の共有点が$2$個であるための必要十分条件は,$b=[キ]$かつ$a>[ク]$が成り立つことである.ただし,$[キ]$には$a$の式,$[ク]$には数を記入すること.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
$1$辺の長さが$1$である正六角形の頂点を時計の針の回り方と逆回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とし,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とする.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[$1$][$2$]}{[$3$]}$,$\displaystyle (2 \overrightarrow{a}+3 \overrightarrow{b}) \cdot (3 \overrightarrow{a}-2 \overrightarrow{b})=\frac{[$4$][$5$]}{[$6$]}$である.
(2)$\overrightarrow{\mathrm{AP}}=2s \overrightarrow{a}+(3-3s) \overrightarrow{b}$で与えられる点$\mathrm{P}$が$\triangle \mathrm{ACF}$の内部に存在するような実数$s$の値の範囲は
\[ \frac{[$7$]}{[$8$]}<s<\frac{[$9$]}{[$10$]} \]
である.
(3)正六角形$\mathrm{ABCDEF}$の外接円を$\mathrm{S}$とする.$\mathrm{S}$の周上の任意の点$\mathrm{Q}$に対して,ベクトル$\overrightarrow{q}=\overrightarrow{\mathrm{AQ}}$は
\[ [$11$][$12$] \overrightarrow{q} \cdot \overrightarrow{q}+[$13$][$14$] \overrightarrow{a} \cdot \overrightarrow{q}+2 \overrightarrow{b} \cdot \overrightarrow{q}=0 \]
をみたす.
自治医科大学 私立 自治医科大学 2014年 第11問
円$x^2+y^2=2$と直線$y=2x+k$は相異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.$\triangle \mathrm{OAB}$の面積を$S$とする($\mathrm{O}$は原点).$S$が最大となるときの$k$の値を$M$としたとき,$M^2$の値を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。