タグ「三角形」の検索結果

35ページ目:全1576問中341問~350問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$3$次関数$f(x)$は$x=0$で極小,$x=a>0$で極大になるとする.また$x=b (\neq a)$で$f(a)=f(b)$が成り立つとする.$x=b$における$y=f(x)$の接線が$y$軸と交わる点を$(0,\ c)$とおく.もし$3$点$(a,\ f(a))$,$(b,\ f(b))$,$(0,\ c)$を$3$頂点とする三角形が二等辺三角形になるならば,接線の傾きは
\[ -2 \sqrt{[$27$][$28$]} \quad\text{または}\quad -\sqrt{[$29$][$30$]} \]
であり,それぞれに対応して,$c$の値は
\[ c-f(a)=-\sqrt{[$31$][$32$]}a \quad\text{または}\quad -\frac{\sqrt{[$33$]}}{[$34$]}a \]
をみたす.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(0,\ 1,\ 2)$,$\mathrm{B}(1,\ 2,\ 0)$がある.

(1)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[$1$][$2$]}}{[$3$]}$である.
(2)点$\mathrm{C}$の位置を,位置ベクトル
\[ \overrightarrow{\mathrm{OC}}=\frac{2}{3} \overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{OB}} \]
によって定める.このとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$の面積の比は
\[ \frac{\triangle \mathrm{ABC}}{\triangle \mathrm{OAB}}=\frac{[$4$]}{[$5$]} \]
である.
(3)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方に垂直な単位ベクトルのうちの$1$つは,
\[ \frac{\sqrt{[$6$][$7$]}}{21} \left( [$8$],\ -[$9$],\ 1 \right) \]
である.
(4)$t$を実数として,点$\displaystyle \mathrm{D} \left( \frac{t^2}{4},\ 4t,\ 19 \right)$を定める.このとき,四面体$\mathrm{ABCD}$の体積$V(t)$は
\[ V(t)=\frac{[$10$]}{[$11$][$12$]} \left( t^2-[$13$]t+[$14$][$15$] \right) \]
である.
(5)数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_{n+1}=a_n+\frac{n+1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$V(a_n)$は,$n=[$16$]$で最小となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
実数$\theta$は$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たすとする.$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標空間の$3$点
\[ \mathrm{A}(\cos^2 \theta,\ \sin \theta,\ 1+\sin^2 \theta),\quad \mathrm{B}(\sin \theta,\ 0,\ -\sin \theta),\quad \mathrm{C}(1,\ \cos 2\theta-\cos^2 \theta,\ 1) \]
に対し,それぞれ$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.

(1)$\overrightarrow{b}$は零ベクトルではないとする.$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にあるならば,

$\displaystyle \theta=\frac{[$27$][$28$]}{[$29$]} \pi$である.

次に$\displaystyle \theta=\frac{\pi}{6}$とし,以下このときの$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を考える.また,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.
(2)点$\mathrm{P}$は$\alpha$上の点で,$|\overrightarrow{\mathrm{AP}}|$が最小になるものとする.このとき,
\[ \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{b}=[$30$],\quad \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{c}=[$31$] \]
が成り立つ.また,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと
\[ \overrightarrow{\mathrm{OP}}=\frac{[$32$][$33$]}{[$34$]} \overrightarrow{b}+\frac{[$35$][$36$]}{[$37$][$38$]} \overrightarrow{c} \]
となる.ただし,$\overrightarrow{u},\ \overrightarrow{v}$はベクトル$\overrightarrow{u}$と$\overrightarrow{v}$の内積を表す.

(3)三角形$\mathrm{OBC}$の面積は$\displaystyle \frac{1}{8} \sqrt{\frac{[$39$][$40$]}{[$41$]}}$であり,$|\overrightarrow{\mathrm{AP}}|=\displaystyle \sqrt{\frac{[$42$]}{[$43$][$44$]}}$なので,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{[$45$]}{[$46$]}$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
立教大学 私立 立教大学 2015年 第3問
座標平面上の$2$点$\mathrm{P}$,$\mathrm{Q}$を$\mathrm{P}(-1,\ 2)$,$\mathrm{Q}(1,\ 2)$とする.点$\mathrm{A}$が点$(1,\ 0)$から出発し,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円周$C$上を次のルールで動くとする.

【ルール】
\begin{itemize}
$1$個のさいころを$1$回投げて$1$回の試行とする.
$a$の目が出たら,反時計回りに$a \times {30}^\circ$回転する.
\end{itemize}

このとき,次の問に答えよ.

(1)三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となるような$\mathrm{A}$の座標をすべて求めよ.
(2)三角形$\mathrm{PQA}$が直角三角形となるような$\mathrm{A}$の座標をすべて求めよ.
(3)$2$回の試行を行う.$2$回の試行の後,三角形$\mathrm{PQA}$が直角三角形となる確率を求めよ.
(4)$3$回の試行を行う.$3$回の試行の後,三角形$\mathrm{PQA}$の面積が$\displaystyle \frac{3}{2}$となる確率を求めよ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$\displaystyle \int_2^4 (x^2+ax+2) \, dx=\frac{14}{3}$を満たす$a$の値は$[ア]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,$\cos \theta+\sqrt{3} \sin \theta$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)実数$x$が$0<x<1$かつ${(\log_2 x)}^2+\log_2 x-6=0$を満たすとき,$x$の値は$[エ]$である.
(4)$3$次方程式$(x-1)(x^2+ax+a+2)=0$が$2$重解をもつとき,$a$の値をすべて求めると,$[オ]$である.
(5)実数$a,\ b$を用いて$\displaystyle \frac{1}{2+i}+\frac{1}{3+4i}=a+bi$と表すとき,$a=[カ]$であり,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$3$つのさいころを同時に投げるとき,ちょうど$2$つのさいころが同じ目になる確率は$[ク]$である.
(7)ベクトル$(2,\ a,\ b)$が$2$つのベクトル$(1,\ -1,\ 3)$,$(-2,\ 1,\ 1)$に垂直であるとき,$(a,\ b)=[ケ]$である.
(8)底辺の長さが$a$,高さが$b$の三角形が$2a+b=6$を満たすとき,三角形の面積の最大値は$[コ]$である.
東京理科大学 私立 東京理科大学 2015年 第2問
原点を$\mathrm{O}$とする座標空間内に$2$点$\mathrm{A}(3,\ -2,\ 1)$,$\mathrm{B}(1,\ 2,\ 5)$を定め,$t$を実数として,$z$軸上を動く点$\mathrm{P}(0,\ 0,\ t)$をとる.

(1)線分$\mathrm{AB}$の長さは$[ア]$である.
(2)線分$\mathrm{AP}$の長さと線分$\mathrm{BP}$の長さが等しくなるのは$t=[イ]$のときである.
(3)$\angle \mathrm{APB}$が直角となるのは$t=[ウ] \pm \sqrt{[エ]}$のときである.

(4)$\triangle \mathrm{ABP}$の面積が最小となるのは$\displaystyle t=\frac{[オ][カ]}{[キ]}$のときである.
上智大学 私立 上智大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において,$\mathrm{OA}=2$,$\mathrm{OB}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1$を満たす点$\mathrm{A}$と点$\mathrm{B}$を考え,直線$\mathrm{AB}$上に点$\mathrm{P}$をとる.ただし,$\mathrm{AB}>\mathrm{AP}$とする.

(1)$\mathrm{OP} \perp \mathrm{AB}$のとき,$\displaystyle \mathrm{OP}=\frac{\sqrt{[サ]}}{[シ]}$である.
(2)$\triangle \mathrm{OBP}$が二等辺三角形であるとき,
\[ \mathrm{OP}^2=1,\quad \mathrm{AP}=\frac{[ス]}{[セ]} \sqrt{[ソ]}, \]
または
\[ \mathrm{OP}^2=[タ]+\frac{[チ]}{[ツ]} \sqrt{[テ]},\quad \mathrm{AP}=[ト]+\sqrt{[ナ]}, \]
または
\[ \mathrm{OP}^2=\frac{[ニ]}{[ヌ]},\quad \mathrm{AP}=\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
である.ただし,
\[ \frac{[ス]}{[セ]} \sqrt{[ソ]}<[ト]+\sqrt{[ナ]}<\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
とする.
(3)座標空間に,$\mathrm{OC}=2$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=1$を満たす点$\mathrm{C}$をとる.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に垂線$\mathrm{CQ}$を下ろす.このとき,

$\displaystyle \mathrm{CQ}=\frac{\sqrt{[ヒ]}}{[フ]}$であり,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{\sqrt{[ヘ]}}{[ホ]}$である.
上智大学 私立 上智大学 2015年 第3問
$1$個のさいころを$2$回投げ,$1$回目に出た目を$m$,$2$回目に出た目を$n$とする.ここで,さいころの$1$から$6$までのそれぞれの目が出る確率は$\displaystyle \frac{1}{6}$である.

さいころの出た目にもとづいて,座標平面に$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( \cos \frac{n\pi}{m},\ \sin \frac{n\pi}{m} \right)$,$\mathrm{C}(0,\ -1)$をとり,$\triangle \mathrm{ABC}$の面積を$S$とする.ただし,点$\mathrm{B}$が点$\mathrm{A}$または点$\mathrm{C}$と一致する場合は$S=0$とする.

(1)$S$がとりうる値は,$0$を含めて全部で$[マ]$通りある.
(2)$S$がとりうる値のうち,小さい方から$k$番目の値を$s_k$とする.

このとき,$s_1=0$,$\displaystyle s_2=\frac{[ミ]+\sqrt{[ム]}}{[メ]}$,$\displaystyle s_4=\frac{\sqrt{[モ]}}{[ヤ]}$である.また,$S=s_2$となる確率は$\displaystyle \frac{[ユ]}{[ヨ]}$,$S=s_4$となる確率は$\displaystyle \frac{[ラ]}{[リ]}$である.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。