タグ「三角形」の検索結果

31ページ目:全1576問中301問~310問を表示)
岩手大学 国立 岩手大学 2015年 第1問
次の問いに答えよ.

(1)$2$次方程式$3x^2+7x+5=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}$の値を求めよ.
(2)方程式$\displaystyle \log_9 (x+4)=\log_3 (2x-7)+\log_5 \frac{1}{5 \sqrt{5}}$を解け.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$の大きさをそれぞれ$A,\ B$で表すとき,$\displaystyle \cos A=\frac{3}{5}$,$\displaystyle \cos B=\frac{2}{3}$であるとし,さらに辺$\mathrm{AB}$の長さは$\displaystyle \frac{38}{5}$であるとする.このとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$の大きさを$A$で表すことにする.この三角形において
\[ \frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7} \]
であり,面積が$3 \sqrt{15}$のとき,$\cos A$と$a$を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2a_n-2^n$で与えられるとき,次の問に答えよ.

(i) $a_1$を求めよ.
(ii) $a_{n+1}$と$a_n$の関係式を求めよ.
(iii) 一般項$a_n$を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.このとき,長さの比$\mathrm{BP}^\prime:\mathrm{P}^\prime \mathrm{C}$を求めよ.
(4)$\mathrm{P}^\prime$を$(3)$で与えたものとする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
三重大学 国立 三重大学 2015年 第2問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{BC}=2$を満たしているとする.また$\mathrm{B}^\prime$は$\mathrm{A}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{AB}^\prime=8$となる点とする.$\mathrm{A}^\prime$は$\mathrm{B}$から$\mathrm{C}$に向かう半直線上にあり,$\mathrm{BA}^\prime>\mathrm{BC}$かつ$\angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}=\angle \mathrm{BAC}$となる点とする.さらに$\mathrm{A}$,$\mathrm{B}$を通る直線と,$\mathrm{A}^\prime$,$\mathrm{B}^\prime$を通る直線の交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\mathrm{DB}$と$\mathrm{DB}^\prime$を求めよ.
(2)$\cos \angle \mathrm{B}^\prime \mathrm{A}^\prime \mathrm{C}$の値を求めよ.また,それを用いて$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}$の面積を求めよ.
(3)$\mathrm{P}$を線分$\mathrm{DB}^\prime$上にあり,$\mathrm{DP}:\mathrm{PB}^\prime=1:3$となる点とする.また$\mathrm{P}^\prime$を線分$\mathrm{AP}$と線分$\mathrm{BC}$との交点とする.このとき,長さの比$\mathrm{BP}^\prime:\mathrm{P}^\prime \mathrm{C}$を求めよ.
(4)$\mathrm{P}^\prime$を$(3)$で与えたものとする.$\triangle \mathrm{ABP}^\prime$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
名古屋大学 国立 名古屋大学 2015年 第1問
座標平面上の円$C:x^2+(y-1)^2=1$と,$x$軸上の$2$点$\mathrm{P}(-a,\ 0)$,$\mathrm{Q}(b,\ 0)$を考える.ただし,$a>0$,$b>0$,$ab \neq 1$とする.点$\mathrm{P}$,$\mathrm{Q}$のそれぞれから$C$に$x$軸とは異なる接線を引き,その$2$つの接線の交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)直線$\mathrm{QR}$の方程式を求めよ.
(2)$\mathrm{R}$の座標を$a,\ b$で表せ.
(3)$\mathrm{R}$の$y$座標が正であるとき,$\triangle \mathrm{PQR}$の周の長さを$T$とする.$T$を$a,\ b$で表せ.
(4)$2$点$\mathrm{P}$,$\mathrm{Q}$が,条件「$\mathrm{PQ}=4$であり,$\mathrm{R}$の$y$座標は正である」を満たしながら動くとき,$T$を最小とする$a$の値とそのときの$T$の値を求めよ.
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
山形大学 国立 山形大学 2015年 第2問
四面体$\mathrm{OABC}$は,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{AOC}=\angle \mathrm{BOC}=\frac{2}{3} \pi$,$\mathrm{OA}=\mathrm{OB}=2$,$\mathrm{OC}=3$を満たす.点$\mathrm{C}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{CH}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$の面積を求めよ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.
(3)$\displaystyle \overrightarrow{\mathrm{CH}}=-\frac{1}{2} \overrightarrow{a}-\frac{1}{2} \overrightarrow{b}-\overrightarrow{c}$を示せ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$の大きさを$A$で表すことにする.この三角形において
\[ \frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7} \]
であり,面積が$3 \sqrt{15}$のとき,$\cos A$と$a$を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2a_n-2^n$で与えられるとき,次の問に答えよ.

(i) $a_1$を求めよ.
(ii) $a_{n+1}$と$a_n$の関係式を求めよ.
(iii) 一般項$a_n$を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。