タグ「三角形」の検索結果

2ページ目:全1576問中11問~20問を表示)
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
鳴門教育大学 国立 鳴門教育大学 2016年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=6$,$\mathrm{BC}=k$,$\mathrm{CA}=2k$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$が直角三角形となるような$k$とそのときの$\sin C$の値をすべて求めなさい.
(2)$\displaystyle \tan C=\frac{3}{4}$となるときの,$\triangle \mathrm{ABC}$の面積を求めなさい.
金沢大学 国立 金沢大学 2016年 第2問
曲線$C:x^2+4y^2=4$上を動く点$\mathrm{P}$と,$C$上の定点$\mathrm{Q}(2,\ 0)$,$\mathrm{R}(0,\ 1)$がある.次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$の面積の最大値と,そのときの$\mathrm{P}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{P}$に対して直線$\mathrm{PQ}$を考える.曲線$C$によって囲まれた図形を直線$\mathrm{PQ}$で$2$つに分けたとき,直線$\mathrm{PQ}$の下方にある部分の面積を求めよ.
新潟大学 国立 新潟大学 2016年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=5$,$\mathrm{OB}=6$,$\mathrm{AB}=7$とする.$t$を$0<t<1$を満たす実数とする.辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:t$に外分する点を$\mathrm{Q}$,辺$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.点$\mathrm{R}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{RS}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OS}}$を$t,\ \overrightarrow{b}$を用いて表せ.
(4)線分$\mathrm{OS}$の長さが$4$となる$t$の値を求めよ.
新潟大学 国立 新潟大学 2016年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=5$,$\mathrm{OB}=6$,$\mathrm{AB}=7$とする.$t$を$0<t<1$を満たす実数とする.辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:t$に外分する点を$\mathrm{Q}$,辺$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.点$\mathrm{R}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{RS}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OS}}$を$t,\ \overrightarrow{b}$を用いて表せ.
(4)線分$\mathrm{OS}$の長さが$4$となる$t$の値を求めよ.
九州大学 国立 九州大学 2016年 第2問
$t$を$0<t<1$を満たす実数とする.面積が$1$である三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$,$t:1-t$,$1:3$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$\mathrm{AE}$と$\mathrm{BF}$,$\mathrm{BF}$と$\mathrm{CD}$,$\mathrm{CD}$と$\mathrm{AE}$の交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$3$直線$\mathrm{AE}$,$\mathrm{BF}$,$\mathrm{CD}$が$1$点で交わるときの$t$の値$t_0$を求めよ.



以下,$t$は$0<t<t_0$を満たすものとする.


\mon[$(2)$] $\mathrm{AP}=k \mathrm{AE}$,$\mathrm{CR}=\ell \mathrm{CD}$を満たす実数$k,\ \ell$をそれぞれ求めよ.
\mon[$(3)$] 三角形$\mathrm{BCQ}$の面積を求めよ.
\mon[$(4)$] 三角形$\mathrm{PQR}$の面積を求めよ.
金沢大学 国立 金沢大学 2016年 第1問
数列$\{a_n\}$と$\{b_n\}$は
\[ \left\{ \begin{array}{l}
a_1=b_1=2, \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
\displaystyle a_{n+1}=\frac{\sqrt{2}}{4}a_n-\frac{\sqrt{6}}{4}b_n,\quad b_{n+1}=\frac{\sqrt{6}}{4}a_n+\frac{\sqrt{2}}{4}b_n \quad (n=1,\ 2,\ 3,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}}
\end{array} \right. \]
を満たすものとする.$a_n$を実部とし$b_n$を虚部とする複素数を$z_n$で表すとき,次の問いに答えよ.

(1)$z_{n+1}=wz_n$を満たす複素数$w$と,その絶対値$|w|$を求めよ.
(2)複素数平面上で,点$z_{n+1}$は点$z_n$をどのように移動した点であるかを答えよ.
(3)数列$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(4)複素数平面上の$3$点$0,\ z_n,\ z_{n+1}$を頂点とする三角形の周と内部を黒く塗りつぶしてできる図形を$T_n$とする.このとき,複素数平面上で$T_1,\ T_2,\ \cdots,\ T_n,\ \cdots$によって黒く塗りつぶされる領域の面積を求めよ.
東京工業大学 国立 東京工業大学 2016年 第2問
$\triangle \mathrm{ABC}$を一辺の長さ$6$の正三角形とする.サイコロを$3$回振り,出た目を順に$X,\ Y,\ Z$とする.出た目に応じて,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ線分$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$上に
\[ \overrightarrow{\mathrm{BP}}=\frac{X}{6} \overrightarrow{\mathrm{BC}},\quad \overrightarrow{\mathrm{CQ}}=\frac{Y}{6} \overrightarrow{\mathrm{CA}},\quad \overrightarrow{\mathrm{AR}}=\frac{Z}{6} \overrightarrow{\mathrm{AB}} \]
をみたすように取る.

(1)$\triangle \mathrm{PQR}$が正三角形になる確率を求めよ.
(2)点$\mathrm{B}$,$\mathrm{P}$,$\mathrm{R}$を互いに線分で結んでできる図形を$T_1$,点$\mathrm{C}$,$\mathrm{Q}$,$\mathrm{P}$を互いに線分で結んでできる図形を$T_2$,点$\mathrm{A}$,$\mathrm{R}$,$\mathrm{Q}$を互いに線分で結んでできる図形を$T_3$とする.$T_1,\ T_2,\ T_3$のうち,ちょうど$2$つが正三角形になる確率を求めよ.
(3)$\triangle \mathrm{PQR}$の面積を$S$とし,$S$のとりうる値の最小値を$m$とする.$m$の値および$S=m$となる確率を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
三重大学 国立 三重大学 2016年 第1問
平面上の$\triangle \mathrm{ABC}$と点$\mathrm{O}$を考える.$m,\ n$は正の実数とする.

(1)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}$とする.このとき${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{OM|}}}^2$を${|\overrightarrow{\mathrm{OA|}}}^2$,${|\overrightarrow{\mathrm{OB|}}}^2$と内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$で表せ.さらに
\[ \frac{mn}{m+n} {|\overrightarrow{\mathrm{AB|}}}^2+(m+n) {|\overrightarrow{\mathrm{OM|}}}^2=n {|\overrightarrow{\mathrm{OA|}}}^2+m {|\overrightarrow{\mathrm{OB|}}}^2 \]
を示せ.
(2)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}_1$,辺$\mathrm{BC}$を$m:n$に内分する点を$\mathrm{M}_2$,辺$\mathrm{CA}$を$m:n$に内分する点を$\mathrm{M}_3$とする.このとき${|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2$は
\[ \frac{mn}{{(m+n)}^2} \left( {|\overrightarrow{\mathrm{AB|}}}^2+{|\overrightarrow{\mathrm{BC|}}}^2+{|\overrightarrow{\mathrm{CA|}}}^2 \right)+{|\overrightarrow{\mathrm{OM|_1}}}^2+{|\overrightarrow{\mathrm{OM|_2}}}^2+{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
に等しいことを示せ.
(3)$(2)$の$m,\ n$を変化させたとき
\[ {|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2-{|\overrightarrow{\mathrm{OM|_1}}}^2-{|\overrightarrow{\mathrm{OM|_2}}}^2-{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
の最大値を${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{BC|}}}^2$,${|\overrightarrow{\mathrm{CA|}}}^2$で表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。