タグ「三角形」の検索結果

158ページ目:全1576問中1571問~1580問を表示)
高知工科大学 公立 高知工科大学 2010年 第1問
Oを原点とする座標平面上に点A$(7,\ 0)$,B$(4,\ 4)$がある.次の各問に答えよ.

(1)$\triangle$OABの外接円の半径を求めよ.
(2)$\triangle$OABの外接円の中心の座標を求めよ.
(3)$\triangle$OABの内接円の半径を求めよ.
(4)$\triangle$OABの内接円の中心の座標を求めよ.
九州歯科大学 公立 九州歯科大学 2010年 第2問
辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを,それぞれ,$4,\ 2,\ b$とする$\triangle \mathrm{ABC}$の辺$\mathrm{AC}$と$\angle \mathrm{ABC}$の$2$等分線の交点を$\mathrm{D}$とする.$\alpha=\angle \mathrm{BAC}$,$\beta=\angle \mathrm{ABC}$,$\gamma=\angle \mathrm{ACB}$,$\displaystyle \overrightarrow{u}=t \overrightarrow{\mathrm{AB}}+(1-t) \overrightarrow{\mathrm{BC}}+\frac{3}{2} \overrightarrow{\mathrm{CD}}$とおくとき,次の問いに答えよ.ただし,$t$は定数である.

(1)$\triangle \mathrm{BCD}$の面積$S_1$と$\triangle \mathrm{ABD}$の面積$S_2$の比$\displaystyle p=\frac{S_1}{S_2}$の値を求めよ.
(2)$|\overrightarrow{\mathrm{CD}}|$と$|\overrightarrow{\mathrm{CA}}|$の比$\displaystyle r=\frac{|\overrightarrow{\mathrm{CD}}|}{|\overrightarrow{\mathrm{CA}}|}$の値を求めよ.
(3)$w=|\overrightarrow{u}|^2+4bt \cos \alpha+16t(1-t) \cos \beta+2b(1-t) \cos \gamma$を$b$と$t$を用いて表せ.
(4)$t=p$のとき,$z=3|\overrightarrow{u}|+4w-b^2$の値を求めよ.
高知工科大学 公立 高知工科大学 2010年 第1問
$\angle \mathrm{C}$を直角とし斜辺の長さが$1$である直角三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=\theta$とする.辺$\mathrm{AC}$の中点を$\mathrm{M}$とし,線分$\mathrm{CM}$上に点$\mathrm{Q}$をとり,$\mathrm{CQ}=x$とする.点$\mathrm{Q}$を通り辺$\mathrm{BC}$に平行な直線と辺$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{PQ}$を折り目として,$\triangle \mathrm{APQ}$を元の三角形に折り重ねる.折り重ねた$\triangle \mathrm{A}^\prime \mathrm{PQ}$と$\triangle \mathrm{ABC}$が重なってできる図形の面積を$T$とする.次の各問に答えよ.

(1)線分$\mathrm{PQ}$の長さを$\theta$と$x$で表せ.
(2)面積$T$を$\theta$と$x$で表せ.
(3)面積$T$の値が最大となるときの$\triangle \mathrm{ABC}$の形状と点$\mathrm{Q}$の位置を求めよ.
(図は省略)
富山県立大学 公立 富山県立大学 2010年 第1問
曲線$C:y=\sqrt{4x-x^2-3} (1 \leqq x \leqq 3)$について,次の問いに答えよ.

(1)曲線$C$のグラフをかけ.
(2)$k$は定数とする.直線$y=x+k$と曲線$C$が接する点$\mathrm{P}$の座標を求めよ.
(3)$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(3,\ 4)$がある.点$\mathrm{Q}$が曲線$C$上を動くとき,$\triangle \mathrm{ABQ}$の面積の最小値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第2問
一辺の長さが$1$の正二十面体$W$のすべての頂点が球$S$の表面上にあるとき,次の問いに答えよ.なお,正二十面体は,すべての面が合同な正三角形であり,各頂点は$5$つの正三角形に共有されている.

(1)正二十面体の頂点の総数を求めよ.
(2)正二十面体$W$の$1$つの頂点を$\mathrm{A}$,頂点$\mathrm{A}$からの距離が$1$である$5$つの頂点を$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.$\displaystyle \sin 36^\circ=\frac{\sqrt{10-2 \sqrt{5}}}{4}$を用いて,正五角形$\mathrm{BCDEF}$の外接円の半径$R$と対角線$\mathrm{BE}$の長さを求めよ.
(3)$2$つの頂点$\mathrm{D}$,$\mathrm{E}$からの距離が$1$である$2$つの頂点のうち,頂点$\mathrm{A}$でない方を$\mathrm{G}$とする.球$S$の直径$\mathrm{BG}$の長さを求めよ.
(4)球$S$の中心を$\mathrm{O}$とする.$\triangle \mathrm{DEG}$を底面とする三角錐$\mathrm{ODEG}$の体積を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第4問
座標平面上に正十二角形があり,その外接円の中心を$\mathrm{C}(c,\ 0)$とする.正十二角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_{12}$はこの順に反時計まわりにならんでいる.点$\mathrm{A}_1$の座標を$(a,\ b)$とするとき,次の問いに答えよ.

(1)点$\mathrm{A}_7$の座標を$a,\ b,\ c$を用いて表せ.
(2)点$\mathrm{A}_2$と$\mathrm{A}_8$の座標をそれぞれ$a,\ b,\ c$を用いて表せ.
(3)$\triangle \mathrm{A}_2 \mathrm{A}_7 \mathrm{A}_8$は面積が$9$であり,重心の座標が$(-3,\ -1)$であるとき,$a,\ b,\ c$の値をすべて求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。