タグ「三角形」の検索結果

105ページ目:全1576問中1041問~1050問を表示)
山口大学 国立 山口大学 2012年 第4問
半径1の円周上に等間隔に並んだ8個の点がある.これらの中から相異なる3個の点を同時に選び,それらを結んで三角形をつくる.このとき,次の問いに答えなさい.

(1)何種類の異なる三角形がつくられるかを答えなさい.ただし,合同な三角形は同じものとみなすことにする.
(2)面積が最大の三角形がつくられる確率と,その三角形の面積を求めなさい.
(3)つくられる三角形の面積の期待値を求めなさい.
宮城教育大学 国立 宮城教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$それぞれの中点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$p$を$0<p<1$を満たす数として,線分$\mathrm{EF}$,$\mathrm{FD}$,$\mathrm{DE}$をそれぞれ$p:1-p$に内分する点を$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$とする.$\overrightarrow{\mathrm{AF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{b}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$p$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{G}$,$\mathrm{H}$が一直線上にあるときの$p$の値を求めよ.
(3)$p$が(2)で求めた値であるとし,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{AC}}|=2$,$\angle \mathrm{BAC}=60^\circ$であるとき,$|\overrightarrow{\mathrm{GH}}|^2$を求めよ.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
防衛大学校 国立 防衛大学校 2012年 第2問
平面上のベクトル$\overrightarrow{a_n}$,$\overrightarrow{b_n} \ (n=1,\ 2,\ 3,\ \cdots)$を,$\overrightarrow{a_1}=(4,\ 0)$,$\overrightarrow{b_1}=(0,\ 4)$と関係式
\[ \overrightarrow{a_{n+1}}=\frac{3 \overrightarrow{a_n}+\overrightarrow{b_n}}{4},\quad \overrightarrow{b_{n+1}}=\frac{\overrightarrow{a_n}-3 \overrightarrow{b_n}}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.さらに原点を$\mathrm{O}$とし,$\overrightarrow{a_n}=\overrightarrow{\mathrm{OA}_n}$,$\overrightarrow{b_n}=\overrightarrow{\mathrm{OB}_n}$とする.このとき,次の問に答えよ.

(1)$\overrightarrow{a_2},\ \overrightarrow{b_2}$を求めよ.
(2)$\overrightarrow{a_{n+2}}$を$\overrightarrow{a_n}$で表せ.
(3)$\triangle \mathrm{OA}_n \mathrm{B}_n$の面積を$S_n$とするとき,$\displaystyle \frac{S_{n+1}}{S_n}$の値を求めよ.
(4)$S_1+S_2+\cdots +S_n>21$をみたす最小の自然数$n$を求めよ.ただし,$\log_{10}2=0.3010$とする.
防衛大学校 国立 防衛大学校 2012年 第3問
座標平面上の$3$点$(0,\ 0)$,$(6,\ 0)$,$(0,\ 6)$を頂点とする三角形と$4$点$(0,\ t)$,$(0,\ t-4)$,$(4,\ t-4)$,$(4,\ t)$を頂点とする正方形の共通部分の面積を$S(t)$とする.このとき,次の問に答えよ.ただし,$2 \leqq t \leqq 6$とする.

(1)$S(2)$と$S(6)$の値を求めよ.
(2)$S(t)$を最大にする$t$の値と,$S(t)$の最大値$M$を求めよ.
(3)$2 \leqq t \leqq 5$のとき,$S(t)=S(t+1)$をみたす$t$の値を求めよ.
防衛大学校 国立 防衛大学校 2012年 第4問
$\angle \mathrm{ACB}$が直角の$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.また,$\mathrm{AB}=20$,$\mathrm{BD}=15$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{\mathrm{CD}}{\mathrm{AC}}$の値を求めよ.
(2)線分$\mathrm{AD}$の長さを求めよ.
(3)$\triangle \mathrm{ABD}$の内接円の半径$r$と,外接円の半径$R$を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。