タグ「ベクトル」の検索結果

1ページ目:全1117問中1問~10問を表示)
神戸大学 国立 神戸大学 2016年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{P}$を辺$\mathrm{OA}$の中点,$\mathrm{Q}$を辺$\mathrm{OB}$を$2:1$に内分する点,$\mathrm{R}$を辺$\mathrm{BC}$の中点とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と辺$\mathrm{AC}$の交点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{PR}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)比$|\overrightarrow{\mathrm{AS|}}:|\overrightarrow{\mathrm{SC|}}$を求めよ.
(3)四面体$\mathrm{OABC}$を$1$辺の長さが$1$の正四面体とするとき,$|\overrightarrow{\mathrm{QS|}}$を求めよ.
神戸大学 国立 神戸大学 2016年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{P}$を辺$\mathrm{OA}$の中点,$\mathrm{Q}$を辺$\mathrm{OB}$を$2:1$に内分する点,$\mathrm{R}$を辺$\mathrm{BC}$の中点とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面と辺$\mathrm{AC}$の交点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$,$\overrightarrow{\mathrm{PR}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)比$|\overrightarrow{\mathrm{AS|}}:|\overrightarrow{\mathrm{SC|}}$を求めよ.
(3)四面体$\mathrm{OABC}$を$1$辺の長さが$1$の正四面体とするとき,$|\overrightarrow{\mathrm{QS|}}$を求めよ.
大分大学 国立 大分大学 2016年 第1問
大きさ$1$のベクトル$\overrightarrow{a}$と,$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{b}$のなす角を$\theta$とする.


(1)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$が最小となるような実数$t$の値を$|\!\overrightarrow{b}\!|$,$\theta$を用いて表しなさい.

(2)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$は$\displaystyle t=-\frac{1}{2}$のとき最小値$2 \sqrt{2}$をとる.$|\!\overrightarrow{b}\!|$および$\cos \theta$の値を求めなさい.
北海道大学 国立 北海道大学 2016年 第3問
$\triangle \mathrm{ABC}$が,$\mathrm{AB}=2$,$\mathrm{AC}=1+\sqrt{3}$,$\angle \mathrm{ACB}={45}^\circ$をみたすとする.

(1)$\beta=\angle \mathrm{ABC}$とおくとき,$\sin \beta$および$\cos 2\beta$の値を求めよ.
(2)$(1)$の$\beta$の値をすべて求めよ.
(3)$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.$\triangle \mathrm{ABC}$が鋭角三角形であるとき,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす実数$s,\ t$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第3問
座標空間内に
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(1,\ 2,\ 2),\quad \mathrm{B}(1,\ 0,\ -1),\quad \mathrm{C}(2,\ -1,\ 1) \]
を頂点とする四面体$\mathrm{OABC}$がある.$t>0$に対して半直線$\mathrm{OB}$上の点$\mathrm{P}$を$\mathrm{OB}:\mathrm{OP}=1:t$となるようにとる.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AP}}$を$t$を用いて表せ.
(2)$\triangle \mathrm{APC}$の面積を$S(t)$とおく.$S(t)$が最小になる$t$の値と,そのときの$S(t)$の値を求めよ.
(3)点$\mathrm{Q}$は直線$\mathrm{OB}$上にあり,点$\mathrm{R}$は直線$\mathrm{AC}$上にある.線分$\mathrm{QR}$の長さの最小値と,そのときの点$\mathrm{R}$の座標を求めよ.
新潟大学 国立 新潟大学 2016年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=5$,$\mathrm{OB}=6$,$\mathrm{AB}=7$とする.$t$を$0<t<1$を満たす実数とする.辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:t$に外分する点を$\mathrm{Q}$,辺$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.点$\mathrm{R}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{RS}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OS}}$を$t,\ \overrightarrow{b}$を用いて表せ.
(4)線分$\mathrm{OS}$の長さが$4$となる$t$の値を求めよ.
一橋大学 国立 一橋大学 2016年 第5問
次の$\tocichi$,$\tocni$のいずれか一方を選択して解答せよ.

\mon[$\tocichi$] 平面上の$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は零ベクトルではなく,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角度は${60}^\circ$である.このとき
\[ r=\frac{|\overrightarrow{a}+2 \overrightarrow{b}|}{|2 \overrightarrow{a}+\overrightarrow{b}|} \]
のとりうる値の範囲を求めよ.
\mon[$\tocni$] $x$は$0$以上の整数である.次の表は$2$つの科目$\mathrm{X}$と$\mathrm{Y}$の試験を受けた$5$人の得点をまとめたものである.

\begin{tabular}{|l||c|c|c|c|c|}
\hline
& $①$ & $②$ & $③$ & $④$ & $⑤$ \\ \hline
科目$\mathrm{X}$の得点 & $x$ & $6$ & $4$ & $7$ & $4$ \\ \hline
科目$\mathrm{Y}$の得点 & $9$ & $7$ & $5$ & $10$ & $9$ \\ \hline
\end{tabular}


(i) $2n$個の実数$a_1,\ a_2,\ \cdots,\ a_n,\ b_1,\ b_2,\ \cdots,\ b_n$について,$\displaystyle a=\frac{1}{n} \sum_{k=1}^n a_k$,$\displaystyle b=\frac{1}{n} \sum_{k=1}^n b_k$とすると,
\[ \sum_{k=1}^n (a_k-a)(b_k-b)=\sum_{k=1}^n a_kb_k-nab \]
が成り立つことを示せ.
(ii) 科目$\mathrm{X}$の得点と科目$\mathrm{Y}$の得点の相関係数$r_{\mathrm{XY}}$を$x$で表せ.
(iii) $x$の値を$2$増やして$r_{\mathrm{XY}}$を計算しても値は同じであった.このとき,$r_{\mathrm{XY}}$の値を四捨五入して小数第$1$位まで求めよ.
新潟大学 国立 新潟大学 2016年 第2問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=5$,$\mathrm{OB}=6$,$\mathrm{AB}=7$とする.$t$を$0<t<1$を満たす実数とする.辺$\mathrm{OA}$を$t:(1-t)$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:t$に外分する点を$\mathrm{Q}$,辺$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.点$\mathrm{R}$から直線$\mathrm{OB}$へ下ろした垂線を$\mathrm{RS}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OS}}$を$t,\ \overrightarrow{b}$を用いて表せ.
(4)線分$\mathrm{OS}$の長さが$4$となる$t$の値を求めよ.
静岡大学 国立 静岡大学 2016年 第1問
一辺の長さが$1$の正方形$\mathrm{ABCD}$が平面上にある.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は,この順に反時計回りに並んでいるものとする.このとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$の値を求めよ.
(2)点$\mathrm{P}$を平面上の点とするとき,$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PD}}$を証明せよ.
(3)点$\mathrm{P}$が平面上を動くとき,$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PB}} \cdot \overrightarrow{\mathrm{PC}}+\overrightarrow{\mathrm{PC}} \cdot \overrightarrow{\mathrm{PD}}+\overrightarrow{\mathrm{PD}} \cdot \overrightarrow{\mathrm{PA}}$の最小値を求めよ.また,その最小値を与える点$\mathrm{P}$について,$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AD}}$を用いて表せ.
広島大学 国立 広島大学 2016年 第1問
座標空間に$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(s,\ s,\ s),\quad \mathrm{B}(-1,\ 1,\ 1),\quad \mathrm{C}(0,\ 0,\ 1) \]
がある.ただし,$s>0$とする.$t,\ u,\ v$を実数とし,
\[ \overrightarrow{d}=\overrightarrow{\mathrm{OB}}-t \overrightarrow{\mathrm{OA}},\quad \overrightarrow{e}=\overrightarrow{\mathrm{OC}}-u \overrightarrow{\mathrm{OA}}-v \overrightarrow{\mathrm{OB}} \]
とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$のとき,$t$を$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{e}$,$\overrightarrow{d} \perp \overrightarrow{e}$のとき,$u,\ v$を$s$を用いて表せ.
(3)$(2)$のとき,$2$点$\mathrm{D}$,$\mathrm{E}$を
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{d},\quad \overrightarrow{\mathrm{OE}}=\overrightarrow{e} \]
となる点とする.四面体$\mathrm{OADE}$の体積が$2$であるとき,$s$の値を求めよ.
スポンサーリンク

「ベクトル」とは・・・

 まだこのタグの説明は執筆されていません。