タグ「シスセ」の検索結果

1ページ目:全8問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
金沢工業大学 私立 金沢工業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1}{\sqrt{5}-\sqrt{2}},\ y=\frac{1}{\sqrt{5}+\sqrt{2}}$のとき,
\[ xy=\frac{[ア]}{[イ]},\quad x+y=\frac{[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(2)$a,\ b$を定数とする.不等式$x-2a \leqq 3x+b \leqq x+2$の解が$4 \leqq x \leqq 5$であるとき,$a=[カ]$,$b=[キク]$である.
(3)$2$次方程式$x^2-3x-5=0$の解を$\alpha,\ \beta (\alpha<\beta)$とするとき,

$m \leqq \alpha<m+1$を満たす整数$m$の値は$m=[ケコ]$,
$n \leqq \beta<n+1$を満たす整数$n$の値は$n=[サ]$

である.
(4)$6$個の数字$0,\ 1,\ 2,\ 3,\ 4,\ 5$を使ってできる$4$桁の整数のうち,$2$の倍数は$[シスセ]$個ある.ただし,同じ数字をくり返し使わないものとする.
(5)方程式$5x+7y=1 \cdots\cdots①$の整数解$x,\ y$を求める.
$5 \cdot 3+7 \cdot ([ソタ])=1 \cdots\cdots②$が成り立ち,$①,\ ②$から
\[ 5(x-3)+7(y+[チ])=0 \]
が成り立つ.よって,$x-3=[ツ]n$($n$は整数)とおけるから,$①$のすべての整数解は
\[ x=[ツ]n+3,\quad y=[テト]n-[チ] \quad (n \text{は整数}) \]
と表せる.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=6$,$\displaystyle \cos A=\frac{9}{16}$であるとき,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[アイ] \sqrt{[ウ]}}{[エ]}$であり,その内接円の半径は$\displaystyle \frac{\sqrt{[オ]}}{[カ]}$である.
(7)$\displaystyle \sin \theta+\cos \theta=\frac{2}{3} (0^\circ \leqq \theta \leqq {180}^\circ)$のとき,$\displaystyle \sin^2 \theta-\cos^2 \theta=\frac{[キ] \sqrt{[クケ]}}{[コ]}$である.
(8)箱の中に赤玉$1$個,黄玉$2$個,白玉$2$個の計$5$個の玉がある.この$5$個の玉から$1$個の玉を取り出し,その色を確認して元に戻す.この試行をくり返して,赤玉を取り出すか,または,黄玉を$2$回取り出したときに試行を終了するものとする.このとき,$3$回目の試行で終了する確率は$\displaystyle \frac{[サシ]}{[スセソ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第3問
$xy$平面上の点$\mathrm{P}$が原点$\mathrm{O}(0,\ 0)$から次の規則に従って動くとする.表,裏がでる確率が等しい硬貨を$2$枚投げて,表が$2$枚でたら右に$1$移動し,裏が$2$枚でたら上に$1$移動し,表$1$枚裏$1$枚でたら右に$1$移動し,さらに上に$1$移動する.以下,この試行を繰り返す.従って,最初表$1$枚裏$1$枚でたら点$\mathrm{P}$の座標は$(1,\ 1)$で,次に表$2$枚でたら点$\mathrm{P}$の座標は$(2,\ 1)$である.このとき,次の問に答えなさい.

(1)この試行を$3$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)この試行を$4$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)この試行を$5$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[カキ]}{[クケコ]}$である.また,そのうち点$\mathrm{P}$が点$(1,\ 1)$を通って座標が$(3,\ 3)$である確率は$\displaystyle \frac{[サ]}{[シスセ]}$である.
(4)この試行を$7$回繰り返したとき,点$\mathrm{P}$が$(3,\ 3)$を通るか,$(3,\ 3)$である確率は$\displaystyle \frac{[ソタチ]}{\fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[15mm][c]{\small{ツテトナ}}}}$である.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
北海道薬科大学 私立 北海道薬科大学 2014年 第2問
次の各設問に答えよ.

(1)$\displaystyle \sin x-\sin y=\frac{1}{2}$,$\displaystyle \cos x-\cos y=\frac{1}{3}$のとき,$\cos (x-y)$の値は$\displaystyle \frac{[アイ]}{[ウエ]}$であり,$\cos (x+y)$の値は$\displaystyle \frac{[オ]}{[カキ]}$である.

(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$は,第$11$項が$20$で
\[ a_{n+1}=a_n-\frac{2}{3} \int_{a_n}^{a_{n+1}} (x-a_n)(x-a_{n+1}) \, dx \]

\[ a_1>a_2>\cdots >a_n>a_{n+1}>\cdots \]
を満たすものとする.初項は$[クケ]$であり,数列の和$\displaystyle \sum_{k=1}^n a_k$は,$n=[コサ]$のとき,最大値$[シスセ]$をとる.
千葉工業大学 私立 千葉工業大学 2014年 第3問
次の各問に答えよ.

(1)折れ線$L:y=4 |x|-5 |x-2|+4 |x-3|$は
$x<0$のとき,$y=[アイ]x+[ウ]$
$0 \leqq x<2$のとき,$y=[エ]x+[オ]$
$2 \leqq x<3$のとき,$y=[カキ]x+[クケ]$
$3 \leqq x$のとき,$y=3x-2$
と表される.$L$と直線$y=2x+k$($k$は定数)の共有点が$4$個となるような$k$の値の範囲は,$[コ]<k<[サ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$a_1=3$,公差$4$の等差数列とすると,$a_{50}=[シスセ]$である.数列$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$b_1=5$で,$b_{50}=299$をみたす等差数列とすると,$\{b_n\}$の公差は$[ソ]$である.
集合$A,\ B$を
\[ A=\{a_1,\ a_2,\ \cdots,\ a_{50} \},\quad B=\{b_1,\ b_2,\ \cdots,\ b_{50} \} \]
と定める.共通部分$A \cap B$の要素のうち,最小のものは$[タチ]$であり,$A \cap B$の要素の個数は$[ツテ]$である.
西南学院大学 私立 西南学院大学 2013年 第2問
三角形$\mathrm{ABC}$において$\mathrm{AB}=\sqrt{6}$,$\mathrm{AC}=2 \sqrt{3}$,$\mathrm{BC}=3+\sqrt{3}$である.$\mathrm{A}$から$\mathrm{BC}$に垂線を下ろし,垂線の足を$\mathrm{H}$とする.このとき,
\[ \mathrm{AH}=\sqrt{[サ]},\quad \angle \mathrm{BAC}=[シスセ]^\circ \]
である.さらに,点$\mathrm{A}$が三角形$\mathrm{DBC}$の内接円の中心となるように点$\mathrm{D}$をとる.このとき,
\[ \mathrm{AD}^2=[ソタ]+[チツ] \sqrt{[テ]} \]
である.
スポンサーリンク

「シスセ」とは・・・

 まだこのタグの説明は執筆されていません。