タグ「シス」の検索結果

1ページ目:全37問中1問~10問を表示)
北海道薬科大学 私立 北海道薬科大学 2016年 第1問
次の各設問に答えよ.

(1)正の実数$a,\ b$が$\sqrt{a^3}-2 \sqrt{b^3}=(ab)^{\frac{3}{4}}$を満たすとき,$a=\sqrt[\mkakko{ア}]{[イウ]}b$である.
(2)方程式$x^2-\sqrt{6}x+1=\sqrt{2}$の解が$\tan \alpha$,$\displaystyle \tan (-\beta) \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$のとき$\displaystyle \alpha-\beta=\frac{[エ]}{[オ]} \pi$である.
(3)$\displaystyle \left( \frac{1}{8} \right)^x-\left( \frac{1}{4} \right)^{x-1}-\left( \frac{1}{2} \right)^{x-2}+16<0$の解は$[カキ]<x<[クケ]$である.
(4)箱の中に赤玉$5$個,白玉$4$個,黒玉$3$個が入っている.この箱の中から$2$個の玉を同時に取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[コサ]}{[シス]}$である.
北海道薬科大学 私立 北海道薬科大学 2016年 第3問
食塩水が$100 \, \mathrm{g}$ある.これから$20 \, \mathrm{g}$を取って捨てた後に濃度が$10 \, \%$の食塩水を$20 \, \mathrm{g}$加える.食塩水の初めの濃度を$20 \, \%$として,この操作を$n$回($n=1,\ 2,\ 3,\ \cdots$)繰り返した後の食塩水に含まれる食塩の量を$x_n \, \mathrm{g}$とする.ただし,$\log_{10}2=0.3010$とする.

(1)$x_1$は$[アイ]$である.

(2)$\displaystyle x_{n+1}=\frac{[ウ]}{[エ]}x_n+[オ]$が成り立つ.この式を$x_{n+1}-p=q(x_n-p)$とおくと,定数$p,\ q$の値は
\[ p=[カキ],\quad q=\frac{[ク]}{[ケ]} \]
となる.これより
\[ x_n=[コサ]+[シス] \left( \frac{[セ]}{[ソ]} \right)^n \]
が得られる.
(3)食塩水の濃度を$11 \, \%$以下にするには,この操作を少なくとも$[タチ]$回繰り返す必要がある.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第3問
座標平面において,次の式で与えられる$2$つの円$C$,$C^\prime$を考える.

$C:x^2+y^2=13$
$C^\prime:x^2+y^2-8x+14y+13=0$

$2$つの円の$2$つの共通接線は,点$([アイ],\ [ウ])$で交わり,共通接線$\ell_1,\ \ell_2$の方程式は,それぞれ

$\ell_1:[エ]x+[オ]y=13$
$\ell_2:[カキ]x+y=[クケコ]$

である.

(1)円$C^\prime$と直線$\ell_1$の共有点の座標は$([サ],\ [シス])$である.
(2)$2$つの円の異なる$2$つの交点と$\ell_1$上の点$\mathrm{P}$が同一直線上にあるとき,点$\mathrm{P}$の座標は$([セ],\ [ソ])$である.
(3)円$C$,$C^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とする.$\ell_1$上の点$\mathrm{Q}$に対し,$\mathrm{OQ}+\mathrm{O}^\prime \mathrm{Q}$が最小となるとき,$\mathrm{Q}$の座標は
\[ \left( [タ],\ \displaystyle\frac{[チ]}{[ツ]} \right) \]
である.
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
$2$個のサイコロを同時に投げる試行を行う.$2$個のサイコロのうち少なくとも$1$個は$1$の目が出る事象を$A$,$2$個とも同じ目が出る事象を$B$とする.このとき以下の確率を求めよ.ただし,$P(X)$は,事象$X$の起こる確率を表す.

(1)$\displaystyle P(\overline{A} \cup B)=\frac{[アイ]}{[ウエ]}$
(2)この試行を$2$回行うとき,少なくとも$1$回は事象$A$が起こる確率は,$\displaystyle \frac{[オカキ]}{\ \fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[14mm][c]{\small{クケコサ}}}\ }$である.

(3)この試行を$2$回行うとき,少なくとも$1$回は事象$B$が起こる確率は,$\displaystyle \frac{[シス]}{[セソ]}$である.
千葉工業大学 私立 千葉工業大学 2015年 第1問
次の各問に答えよ.

(1)実数$x,\ y$が$(3+2i)x-(2+5i)y=6-7i$(ただし,$i^2=-1$)をみたすとき,$x=[ア]$,$y=[イ]$である.
(2)不等式$\displaystyle \frac{x-4}{3}<\frac{x-3}{2}<\frac{x-2}{6}$の解は$\displaystyle [ウ]<x<\frac{[エ]}{[オ]}$である.
(3)三角形$\mathrm{ABC}$において,$A={120}^\circ$,$B={45}^\circ$,$\mathrm{BC}=6 \sqrt{2}$のとき,$\mathrm{CA}=[カ] \sqrt{[キ]}$である.
(4)$3$個のサイコロを同時に投げるとき,出た目の和が$4$である確率は$\displaystyle \frac{[ク]}{[ケコ]}$,出た目の和が$16$である確率は$\displaystyle \frac{[サ]}{[シス]}$である.
(5)整式$2x^3+ax^2-bx-14$が$x^2-4$で割り切れるとき,定数$a,\ b$の値は$\displaystyle a=\frac{[セ]}{[ソ]}$,$b=[タ]$である.
(6)方程式$16^x-9 \cdot 4^x+8=0$の解は$\displaystyle x=[チ],\ \frac{[ツ]}{[テ]}$である.
(7)不等式$\displaystyle \log_2 (x-3)<\frac{1}{2} \log_2 (2x-3)$の解は$[ト]<x<[ナ]$である.
(8)関数$f(x)=x^3-ax^2+(a+3)x+4$が$x=3$で極値をとるとき,定数$a$の値は$[ニ]$であり,$f(x)$の極大値は$[ヌ]$である.
スポンサーリンク

「シス」とは・・・

 まだこのタグの説明は執筆されていません。