タグ「ゲーム」の検索結果

2ページ目:全72問中11問~20問を表示)
千葉大学 国立 千葉大学 2015年 第2問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
千葉大学 国立 千葉大学 2015年 第3問
コインを$n$回続けて投げ,$1$回投げるごとに次の規則に従って得点を得るゲームをする.
\begin{itemize}
コイン投げの第$1$回目には,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と異なる面が出たら,$1$点を得点とする.
コイン投げの第$2$回目以降において,ひとつ前の回と同じ面が出たら,$2$点を得点とする.
\end{itemize}
例えばコインを$3$回投げて(裏,表,裏)の順に出たときの得点は,$1+1+1=3$より$3$点となる.また(裏,裏,表)のときの得点は,$1+2+1=4$より$4$点となる.

コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とし,このゲームで得られる得点が$m$となる確率を$P_{n,m}$とおく.このとき,以下の問いに答えよ.

(1)$n \geqq 2$が与えられたとき,$P_{n,2n-1}$と$P_{n,2n-2}$を求めよ.
(2)$n \leqq m \leqq 2n-1$について,$P_{n,m}$を$n$と$m$の式で表せ.
佐賀大学 国立 佐賀大学 2015年 第4問
正方形の$4$個の頂点を,時計回りに順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.頂点$\mathrm{A}$から出発して頂点上を時計回りに点$\mathrm{P}$を進めるゲームを行う.硬貨を$1$回投げるごとに,表が出たときには頂点$1$つ分だけ点$\mathrm{P}$を進め,裏が出たときには頂点$2$つ分だけ点$\mathrm{P}$を進めるものとする.ただし,点$\mathrm{P}$が頂点$\mathrm{D}$にとまった時点でゲームは終わるものとする.

硬貨を$n$回投げ終えた時点で点$\mathrm{P}$が頂点$\mathrm{A}$に到達する確率を$p_n$とするとき,次の問に答えよ.

(1)$p_2,\ p_3$を求めよ.
(2)$p_4,\ p_5$を求めよ.
(3)$p_{12}$を求めよ.
早稲田大学 私立 早稲田大学 2015年 第4問
$N$を$3$以上の自然数とする.$1$から$N$までの数字が書かれた$N$枚のカードを用意し,$\mathrm{A}$と$\mathrm{B}$の二人で次のようなゲームを行う.まず$\mathrm{A}$は,$1$から$N$までの数のうちから一つ選びそれを$K$とし,その数は$\mathrm{B}$に知らせずにおく.その後,以下の試行を何度も繰り返す.

$\mathrm{B}$は$N$枚のカードから無作為に一枚引いて$\mathrm{A}$にその数を伝え,$\mathrm{A}$は引かれた数字が$K$より大きければ「上」,$K$以下であれば「以下」と$\mathrm{B}$に答え,$\mathrm{B}$はその答から$K$の範囲を絞り込む.引いたカードは元へ戻す.
このとき,$n$回以下の試行で$\mathrm{B}$が$K$を確定できる確率を$P_N(n)$で表す.次の問に答えよ.

(1)$K=1$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(2)$K=2$のとき,$P_3(1)$,$P_3(2)$,$P_3(3)$を求めよ.
(3)$K=1,\ 2,\ \cdots,\ N$について$P_N(n)$を求めよ.
(4)自然数$c$に対して,極限値$\displaystyle \lim_{N \to \infty} P_N(cN)$を求めよ.
大阪歯科大学 私立 大阪歯科大学 2015年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
右図のような盤上の$\mathrm{A}$にコマを置き,線に沿って一区間ずつコマを進めるゲームをする.コマを進める方向は,サイコロを投げ,偶数の目が出たら左,奇数の目が出たら上に進める.ただし,左斜め上に進む線があるときは,サイコロの目が$5$か$6$のときに限り,この線に沿って移動し,$4$以下のときは,他の点における規則と同様とする.進めないときはそのまま留まり,逆戻りはできない.

(1)$4$回サイコロを投げたとき,$\mathrm{B}$に到達する確率はいくらか.
(2)$5$回目でちょうど$\mathrm{C}$に到達する確率はいくらか.
(3)$6$回目でちょうど$\mathrm{C}$に到達する確率はいくらか.

\end{mawarikomi}
岡山大学 国立 岡山大学 2014年 第4問
$\mathrm{A}$と$\mathrm{B}$が続けて試合を行い,先に$3$勝した方が優勝するというゲームを考える.$1$試合ごとに$\mathrm{A}$が勝つ確率を$p$,$\mathrm{B}$が勝つ確率を$q$,引き分ける確率を$1-p-q$とする.

(1)$3$試合目で優勝が決まる確率を求めよ.
(2)$5$試合目で優勝が決まる確率を求めよ.
(3)$\displaystyle p=q=\frac{1}{3}$としたとき,$5$試合目が終了した時点でまだ優勝が決まらない確率を求めよ.
(4)$\displaystyle p=q=\frac{1}{2}$としたとき,優勝が決まるまでに行われる試合数の期待値を求めよ.
九州大学 国立 九州大学 2014年 第4問
$\mathrm{A}$さんは$5$円硬貨を$3$枚,$\mathrm{B}$さんは$5$円硬貨を$1$枚と$10$円硬貨を$1$枚持っている.$2$人は自分が持っている硬貨すべてを一度に投げる.それぞれが投げた硬貨のうち表が出た硬貨の合計金額が多い方を勝ちとする.勝者は相手の裏が出た硬貨をすべてもらう.なお,表が出た硬貨の合計金額が同じときは引き分けとし,硬貨のやりとりは行わない.このゲームについて,以下の問いに答えよ.

(1)$\mathrm{A}$さんが$\mathrm{B}$さんに勝つ確率$p$,および引き分けとなる確率$q$をそれぞれ求めよ.
(2)ゲーム終了後に$\mathrm{A}$さんが持っている硬貨の合計金額の期待値$E$を求めよ.
九州大学 国立 九州大学 2014年 第4問
$\mathrm{A}$さんは$5$円硬貨を$3$枚,$\mathrm{B}$さんは$5$円硬貨を$1$枚と$10$円硬貨を$1$枚持っている.$2$人は自分が持っている硬貨すべてを一度に投げる.それぞれが投げた硬貨のうち表が出た硬貨の合計金額が多い方を勝ちとする.勝者は相手の裏が出た硬貨をすべてもらう.なお,表が出た硬貨の合計金額が同じときは引き分けとし,硬貨のやりとりは行わない.このゲームについて,以下の問いに答えよ.

(1)$\mathrm{A}$さんが$\mathrm{B}$さんに勝つ確率$p$,および引き分けとなる確率$q$をそれぞれ求めよ.
(2)ゲーム終了後に$\mathrm{A}$さんが持っている硬貨の合計金額の期待値$E$を求めよ.
千葉大学 国立 千葉大学 2014年 第4問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
琉球大学 国立 琉球大学 2014年 第4問
$1$個のさいころを繰り返し投げて景品を当てるゲームを行う.景品は$\mathrm{A}$と$\mathrm{B}$の$2$種類あり,次の規則にしたがって景品をもらえるとする.
\begin{itemize}
出た目の数が$6$のときは,景品$\mathrm{A}$をもらえる.
出た目の数が$4,\ 5$のときは,景品$\mathrm{B}$をもらえる.
出た目の数が$1,\ 2,\ 3$のときは,景品はもらえない.
景品$\mathrm{A}$と景品$\mathrm{B}$の$2$種類とももらうことができたらゲームは終了する.
\end{itemize}
ちょうど$n$回さいころを投げ終わったところでゲームが終了する確率を$p_n$とする.次の問いに答えよ.

(1)$p_2$の値を求めよ.
(2)$n$を$2$以上の整数とする.$p_n$を$n$を用いて表せ.
(3)$n$を$2$以上の整数とする.不等式
\[ p_{n+1}-p_n<\frac{2}{3}(p_n-p_{n-1}) \]
を示せ.ただし,$p_1=0$とする.
スポンサーリンク

「ゲーム」とは・・・

 まだこのタグの説明は執筆されていません。