タグ「クケ」の検索結果

1ページ目:全48問中1問~10問を表示)
東洋大学 私立 東洋大学 2016年 第3問
曲線$y=\sin x \cos^3 x+x$上の$2$点$(0,\ 0)$,$\displaystyle \left( \frac{5}{4} \pi,\ \frac{5 \pi+1}{4} \right)$における接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1,\ \ell_2$の方程式は,


$\ell_1:y=[ア]x,$

$\displaystyle \ell_2:y=\frac{1}{[イ]}x+\frac{1}{[ウ]}+\frac{[エ]}{[オ]} \pi$


であり,$\ell_1$と$\ell_2$の交点の座標は,
\[ \left( \frac{[カ] \pi+[キ]}{[クケ]},\ \frac{[コ] \pi+[サ]}{[シ]} \right) \]
である.
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
北海道薬科大学 私立 北海道薬科大学 2016年 第1問
次の各設問に答えよ.

(1)正の実数$a,\ b$が$\sqrt{a^3}-2 \sqrt{b^3}=(ab)^{\frac{3}{4}}$を満たすとき,$a=\sqrt[\mkakko{ア}]{[イウ]}b$である.
(2)方程式$x^2-\sqrt{6}x+1=\sqrt{2}$の解が$\tan \alpha$,$\displaystyle \tan (-\beta) \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$のとき$\displaystyle \alpha-\beta=\frac{[エ]}{[オ]} \pi$である.
(3)$\displaystyle \left( \frac{1}{8} \right)^x-\left( \frac{1}{4} \right)^{x-1}-\left( \frac{1}{2} \right)^{x-2}+16<0$の解は$[カキ]<x<[クケ]$である.
(4)箱の中に赤玉$5$個,白玉$4$個,黒玉$3$個が入っている.この箱の中から$2$個の玉を同時に取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[コサ]}{[シス]}$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
センター試験 問題集 センター試験 2015年 第4問
同じ大きさの$5$枚の正方形の板を一列に並べて,図のような掲示板を作り,壁に固定する.赤色,緑色,青色のペンキを用いて,隣り合う正方形どうしが異なる色となるように,この掲示板を塗り分ける.ただし,塗り分ける際には,$3$色のペンキをすべて使わなければならないわけではなく,$2$色のペンキだけで塗り分けることがあってもよいものとする.
(図は省略)

(1)このような塗り方は,全部で$[アイ]$通りある.
(2)塗り方が左右対称となるのは,$[ウエ]$通りある.
(3)青色と緑色の$2$色だけで塗り分けるのは,$[オ]$通りある.
(4)赤色に塗られる正方形が$3$枚であるのは,$[カ]$通りある.
(5)赤色に塗られる正方形が$1$枚である場合について考える.
\begin{itemize}
どちらかの端の$1$枚が赤色に塗られるのは,$[キ]$通りある.
端以外の$1$枚が赤色に塗られるのは,$[クケ]$通りある.
\end{itemize}
よって,赤色に塗られる正方形が$1$枚であるのは,$[コサ]$通りある.
(6)赤色に塗られる正方形が$2$枚であるのは,$[シス]$通りある.
北海道薬科大学 私立 北海道薬科大学 2015年 第2問
次の各設問に答えよ.

(1)数列$10,\ 22,\ 41,\ 74,\ \cdots$は,初項が$[ア]$,公差が$[イ]$の等差数列と,初項が$[ウ]$,公比が$[エ]$の等比数列の和で表すことができる.
(2)$a,\ b$を正の実数として,$xy$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(a,\ 8)$,$\mathrm{Q}(b,\ 0)$をとる.$\angle \mathrm{OPQ}={90}^\circ$の三角形$\mathrm{OPQ}$の面積は,$a=[オ]$,$b=[カキ]$のとき,最小値$[クケ]$をとる.
北海道薬科大学 私立 北海道薬科大学 2015年 第3問
$\displaystyle \sin \theta-\cos \theta=\frac{1}{3} \left( 0<\theta<\frac{3}{4} \pi \right)$であるとする.

(1)$\sin \theta \cos \theta$の値は$\displaystyle \frac{[ア]}{[イ]}$である.

(2)$\displaystyle \sin^3 \theta-\cos^3 \theta=\frac{[ウエ]}{[オカ]}$,$\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{[キ] \sqrt{[クケ]}}{[コサ]}$である.

(3)$\displaystyle \tan \theta=\frac{[シ]+\sqrt{[スセ]}}{[ソ]}$である.
東邦大学 私立 東邦大学 2015年 第12問
連立不等式$|x| \leqq 1$,$|y| \leqq 1$で表される領域を$x$軸および$y$軸のまわりに$1$回転してできる立体を,それぞれ$X,\ Y$とする.$X$と$Y$の共通部分の体積は$\displaystyle \frac{[クケ]}{[コ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
スポンサーリンク

「クケ」とは・・・

 まだこのタグの説明は執筆されていません。