タグ「カキ」の検索結果

2ページ目:全54問中11問~20問を表示)
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第2問
等式
\[ f^\prime(x)=x^2+2 \left( \int_0^1 f(t) \, dt \right) x \]
を満たす関数$y=f(x)$を考える.$\displaystyle c=\int_0^1 f(t) \, dt$とおく.

(1)$\displaystyle f(x)=\frac{1}{3}x^3+cx^2+\left( \frac{[ア]}{[イ]}c-\frac{[ウ]}{[エオ]} \right)$であり,

$f(0)=1$のとき,$\displaystyle c=\frac{[カキ]}{[ク]}$である.

(2)$c<0$とし,$f(x)$は$0 \leqq x \leqq 1$において$x=1$で最大値をとるものとする.このとき,$c$のとりうる最小の値は
\[ \frac{[ケコ]}{[サ]} \]
であり,$f(x)$の$0 \leqq x \leqq 1$における最小値は$c$を用いて
\[ \frac{[シ]}{[ス]} c^{\mkakko{セ}}+\frac{[ソ]}{[タ]}c-\frac{[チ]}{[ツテ]} \]
と表すことができる.
(3)座標平面において,関数$y=f(x)$のグラフと直線
\[ y=-\frac{3}{4}c^2x-\frac{1}{12} \]
が点$(-1,\ f(-1))$で接するとき,$c=[ト]$である.このとき,$2$つのグラフのもう$1$つの共有点の$x$座標は$[ナニ]$である.
近畿大学 私立 近畿大学 2016年 第3問
座標平面において,次の式で与えられる$2$つの円$C$,$C^\prime$を考える.

$C:x^2+y^2=13$
$C^\prime:x^2+y^2-8x+14y+13=0$

$2$つの円の$2$つの共通接線は,点$([アイ],\ [ウ])$で交わり,共通接線$\ell_1,\ \ell_2$の方程式は,それぞれ

$\ell_1:[エ]x+[オ]y=13$
$\ell_2:[カキ]x+y=[クケコ]$

である.

(1)円$C^\prime$と直線$\ell_1$の共有点の座標は$([サ],\ [シス])$である.
(2)$2$つの円の異なる$2$つの交点と$\ell_1$上の点$\mathrm{P}$が同一直線上にあるとき,点$\mathrm{P}$の座標は$([セ],\ [ソ])$である.
(3)円$C$,$C^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とする.$\ell_1$上の点$\mathrm{Q}$に対し,$\mathrm{OQ}+\mathrm{O}^\prime \mathrm{Q}$が最小となるとき,$\mathrm{Q}$の座標は
\[ \left( [タ],\ \displaystyle\frac{[チ]}{[ツ]} \right) \]
である.
北海道薬科大学 私立 北海道薬科大学 2015年 第2問
次の各設問に答えよ.

(1)数列$10,\ 22,\ 41,\ 74,\ \cdots$は,初項が$[ア]$,公差が$[イ]$の等差数列と,初項が$[ウ]$,公比が$[エ]$の等比数列の和で表すことができる.
(2)$a,\ b$を正の実数として,$xy$平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}(a,\ 8)$,$\mathrm{Q}(b,\ 0)$をとる.$\angle \mathrm{OPQ}={90}^\circ$の三角形$\mathrm{OPQ}$の面積は,$a=[オ]$,$b=[カキ]$のとき,最小値$[クケ]$をとる.
東京医科大学 私立 東京医科大学 2015年 第4問
座標平面における曲線$\displaystyle C_1:y=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=\frac{12}{7} \cos x$の交点の$x$座標を$x_0$とするとき,
\[ \sin x_0=\frac{[ア]}{[イ]} \]
であり,曲線$C_1,\ C_2$と$y$軸とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウ]}{[エ]}+\frac{1}{2} \log \frac{[オ]}{[カキ]} \]
である.ただし,対数は自然対数とする.
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
以下の問に答えよ.

(1)$2$次不等式$ax^2+8x+b>0$の解が$-1<x<5$であるとき,$a=[アイ]$,$b=[ウエ]$である.
(2)$y=|x^2+x-2|+x+1$の$-3 \leqq x \leqq 1$における最大値は$[オ]$,最小値は$[カキ]$である.
金沢工業大学 私立 金沢工業大学 2015年 第3問
平面上に異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,それらは一直線上にないとする.このとき,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.線分$\mathrm{OA}$を$5:3$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に外分する点を$\mathrm{Q}$とする.また,線分$\mathrm{AB}$と線分$\mathrm{PQ}$の交点を$\mathrm{R}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ア]}{[イ]} \overrightarrow{a}$,$\displaystyle \overrightarrow{\mathrm{OQ}}=\frac{[ウ]}{[エ]} \overrightarrow{b}$である.

(2)$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[オ]}{[カキ]} \overrightarrow{a}+\frac{[ク]}{[ケコ]} \overrightarrow{b}$である.

(3)点$\mathrm{R}$は線分$\mathrm{AB}$を$[サ]:[シ]$に内分する.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第3問
$xy$平面上の点$\mathrm{P}$が原点$\mathrm{O}(0,\ 0)$から次の規則に従って動くとする.表,裏がでる確率が等しい硬貨を$2$枚投げて,表が$2$枚でたら右に$1$移動し,裏が$2$枚でたら上に$1$移動し,表$1$枚裏$1$枚でたら右に$1$移動し,さらに上に$1$移動する.以下,この試行を繰り返す.従って,最初表$1$枚裏$1$枚でたら点$\mathrm{P}$の座標は$(1,\ 1)$で,次に表$2$枚でたら点$\mathrm{P}$の座標は$(2,\ 1)$である.このとき,次の問に答えなさい.

(1)この試行を$3$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)この試行を$4$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)この試行を$5$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[カキ]}{[クケコ]}$である.また,そのうち点$\mathrm{P}$が点$(1,\ 1)$を通って座標が$(3,\ 3)$である確率は$\displaystyle \frac{[サ]}{[シスセ]}$である.
(4)この試行を$7$回繰り返したとき,点$\mathrm{P}$が$(3,\ 3)$を通るか,$(3,\ 3)$である確率は$\displaystyle \frac{[ソタチ]}{\fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[15mm][c]{\small{ツテトナ}}}}$である.
スポンサーリンク

「カキ」とは・・・

 まだこのタグの説明は執筆されていません。