タグ「オカ」の検索結果

2ページ目:全39問中11問~20問を表示)
東洋大学 私立 東洋大学 2015年 第4問
一般項が$\displaystyle a_n=\sin \frac{3n \pi}{7}$で定義される数列$\{a_n\}$の最初の$n$項の和を$\displaystyle S_n=\sum_{k=1}^n a_k$とおく.次の各問に答えよ.

(1)$a_n>0$となるための必要十分条件は,$n$を$[アイ]$で割った余りが$1$,$2$,$[ウ]$,$[エ]$,$[オカ]$,$[キク]$のいずれかとなることである.ただし,$[ウ]<[エ]<[オカ]<[キク]$とする.
(2)任意の自然数$n$に対し,$a_{n+\mkakko{ケ}}=-a_n$が成り立つ.
(3)$a_n$が最大となるための必要十分条件は,$n$を$[コサ]$で割った余りが$[シ]$または$[ス]$となることである.ただし,$[シ]<[ス]$とする.
(4)$S_n$が最大となるための必要十分条件は,$n$を$[セソ]$で割った余りが$[タ]$または$[チツ]$となることである.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
千葉工業大学 私立 千葉工業大学 2015年 第4問
$xy$平面において,放物線$C:y=9x^2$を$x$軸方向に$t$(ただし,$t>0$),$y$軸方向に$8$だけ平行移動して得られる放物線を$D$とする.また,$C$上の点$(p,\ 9p^2)$における$C$の接線を$\ell$とする.このとき,次の問いに答えよ.

(1)$D$の方程式は$y=9x^2-[アイ]tx+[ウ]t^2+[エ]$である.
(2)$\ell$の方程式は$y=[オカ]px-[キ]p^2$である.
以下,$\ell$は$D$にも接しているとする.
(3)$p$を$t$を用いて表すと,$\displaystyle p=\frac{[ク]}{[ケ]t}$である.また,$\ell$と$D$の接点の$x$座標$X$を$t$を用いて表すと
\[ X=t+\frac{[コ]}{[サ]t} \]
である.
(4)$X$は$\displaystyle t=\frac{[シ]}{[ス]}$のとき,最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.このとき,$C$と$D$と$\ell$で囲まれた部分の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
近畿大学 私立 近畿大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta \cos \theta=\frac{1}{8}$とする.ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.

(i) $\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \sin \theta-\cos \theta=-\frac{\sqrt{[ウ]}}{[エ]}$である.
(ii) $\displaystyle \cos 2\theta=\frac{\sqrt{[オカ]}}{[キ]}$,$\tan \theta=[ク]-\sqrt{[ケコ]}$である.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$チームがあり,それぞれのチームは他のチームと$1$回ずつ試合をする.$2$つのチームが対戦するときの勝敗の確率は$\displaystyle \frac{1}{2}$とし,引き分けはないものとする.

(i) 試合は全部で$[サシ]$試合行われる.
(ii) $4$敗のチームが現れる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
(iii) $3$勝$1$敗のチームがちょうど$3$チーム現れる確率は$\displaystyle \frac{[タ]}{[チツテ]}$である.
東京医科大学 私立 東京医科大学 2014年 第3問
座標平面の曲線$C:y=\sqrt{x^2+9}$上の点$\mathrm{A}(4,\ 5)$における接線を$L$とする.

(1)接線$L$の方程式は
\[ y=\frac{[ア]}{[イ]}x+\frac{[ウ]}{[エ]} \]
である.
(2)曲線$C$,接線$L$および$y$軸とで囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積を$V$とすれば
\[ V=\frac{[オカ]}{[キ]} \pi \]
である.
東京医科大学 私立 東京医科大学 2014年 第4問
座標平面上の$2$つの曲線
\[ C_1:y=ax^2+1,\quad C_2:x=ay^2+1 \quad (a \text{は正の定数}) \]
を考える.

(1)$2$つの曲線$C_1,\ C_2$が$2$点で交わるような正の定数$a$の値の範囲は
\[ 0<a<\frac{[ア]}{[イ]} \]
である.
(2)$\displaystyle a=\frac{3}{16}$のとき,曲線$C_1$と曲線$C_2$とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウエ]}{[オカ]} \]
である.
近畿大学 私立 近畿大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta \cos \theta=\frac{1}{8}$とする.ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.

(i) $\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \sin \theta-\cos \theta=-\frac{\sqrt{[ウ]}}{[エ]}$である.
(ii) $\displaystyle \cos 2\theta=\frac{\sqrt{[オカ]}}{[キ]}$,$\tan \theta=[ク]-\sqrt{[ケコ]}$である.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$チームがあり,それぞれのチームは他のチームと$1$回ずつ試合をする.$2$つのチームが対戦するときの勝敗の確率は$\displaystyle \frac{1}{2}$とし,引き分けはないものとする.

(i) 試合は全部で$[サシ]$試合行われる.
(ii) $4$敗のチームが現れる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
(iii) $3$勝$1$敗のチームがちょうど$3$チーム現れる確率は$\displaystyle \frac{[タ]}{[チツテ]}$である.
杏林大学 私立 杏林大学 2014年 第4問
実数$x$に対し
\[ f(x)=e^{3x}+e^{-3x},\qquad g(x)=e^{3x}-e^{-3x} \]
で定義される$2$つの関数$f(x)$と$g(x)$および$\displaystyle h(x)=\frac{g(x)}{f(x)}$で与えられる関数$h(x)$について,以下の問いに答えよ.

(1)関数$f(x),\ g(x)$は
\[ \frac{d}{dx}f(x)=[ア] g(x),\qquad \frac{d}{dx}g(x)=[イ] f(x) \]
という関係を満たす.また,関数$h(x)$に対して
\[ h(0)=[ウ], \lim_{x \to \infty} h(x)=[エ], \lim_{x \to -\infty} h(x)=[オカ], \frac{d}{dx}h(x)=\frac{[キク]}{(f(x))^2} \]
が成り立つ.
(2)$x$座標が$\displaystyle a=\frac{1}{3} \log_e 2$である点$(a,\ h(a))$における,曲線$y=h(x)$の接線を$C$とする.接線$C$と直線$y=[エ]$の交点の$x$座標を$b$とすると,$\displaystyle b-a=\frac{[ケ]}{[コサ]}$となる.

(3)$x \geqq a$の領域において,接線$C$,曲線$y=h(x)$,直線$y=[エ]$および直線$x=t (>b)$で囲まれた図形の面積を$S(t)$とすると,
\[ \lim_{t \to \infty} S(t)=\frac{[シス]}{[セソ]}+\frac{1}{[タ]} \log_e \frac{[チ]}{[ツ]} \]
が成り立つ.
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
松山大学 私立 松山大学 2014年 第1問
次の各問の答えとして正しいものを選択肢から選びなさい.

(1)${10}^{-7} \times {10}^{-7}=[ア]$
\[ \nagamaruichi {10}^{14} \qquad \nagamaruni {10}^{-49} \qquad \nagamarusan {10}^{-14} \qquad \nagamarushi {10}^{49} \qquad \nagamarugo 10 \]
(2)$y={10}^{-x}$のグラフは$[イ]$である.
(図は省略)
(3)$\displaystyle y=\frac{Bx}{A+x}$($A,\ B$は正の定数)において,$\displaystyle y=\frac{B}{2}$のときの$x$の値は,$[ウ]$である.
\[ \nagamaruichi B \qquad \nagamaruni A \qquad \nagamarusan \frac{A}{B} \qquad \nagamarushi \frac{B}{A} \qquad \nagamarugo AB \]
次の空所$[エ]$~$[テ]$を埋めよ.

(4)$\displaystyle \frac{-12}{(x+1)(x-3)}=\frac{[エ]}{x+1}+\frac{[オカ]}{x-3}$

(5)$\displaystyle \left( \sqrt{8}-\sqrt{\frac{4}{3}} \right) \left( \sqrt{\frac{3}{4}}+\sqrt{18} \right)=[キク]-\sqrt{[ケ]}$
(6)$(4^{\frac{3}{2}})^{\frac{-4}{3}}=\frac{[コ]}{[サシ]}$
(7)$\displaystyle \frac{1}{2} \log_2 6-\log_4 24=[スセ]$
(8)$(4x^2+5x-4) \div (x-2)=[ソ]x+[タチ]$,余り$[ツテ]$
スポンサーリンク

「オカ」とは・・・

 まだこのタグの説明は執筆されていません。