タグ「イウ」の検索結果

2ページ目:全32問中11問~20問を表示)
東京医科大学 私立 東京医科大学 2015年 第2問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^1 {\left( x \sqrt{1-x^2} \right)}^3 \, dx=\frac{[ア]}{[イウ]}$である.
(2)座標平面における曲線$\displaystyle C:y=\frac{4}{3}x+\frac{2}{3} \sqrt{x} (x>0)$上に点$\mathrm{P}$をとり,原点$\mathrm{O}$と点$\mathrm{P}$とを結ぶ線分$\mathrm{OP}$を考える.線分$\mathrm{OP}$と曲線$C$により囲まれた図形の面積を$A$とし,線分$\mathrm{OP}$を一辺とする正方形の面積を$S$とする.点$\mathrm{P}$が曲線$C$上を動くとき,面積比$\displaystyle \frac{A}{S}$のとり得る最大値を$M$とすれば$\displaystyle M=\frac{[エ]}{[オカ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
三角形$\mathrm{ABC}$の面積を$S$,内接円の半径を$r$とする.$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\sqrt{6}$,$\angle \mathrm{ABC}={45}^\circ$のとき,以下の値を求めよ.

(1)$\mathrm{AC}=[ア]$
(2)$\angle \mathrm{BAC}={[イウ]}^\circ$

(3)$\displaystyle S=\frac{3+\sqrt{[エ]}}{[オ]}$

(4)$\displaystyle r=\frac{1}{2} \left( [カ]+\sqrt{[キ]}-\sqrt{[ク]} \right)$
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
中京大学 私立 中京大学 2015年 第6問
下の図のような道があり,$\mathrm{A}_0$から$\mathrm{A}_n$($n$は$4$以下の自然数)まで行く最短経路の総数を$a_n$とするとき,$a_2=[ア]$,$a_3=[イウ]$,$a_4=[エオ]$である.
(図は省略)
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の条件によって定められる関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を考える.
\[ f_1(x)=(3x+5)e^{2x},\quad f_{n+1}(x)={f_n}^{\prime}(x) \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$f_2(x)=([ア]x+[イウ])e^{2x}$である.
(2)$f_n(x)=(a_nx+b_n)e^{2x}$($a_n,\ b_n$は定数)とおくと,
\[ a_1=[エ],\quad b_1=[オ],\quad \left\{ \begin{array}{l}
a_{n+1}=[カ]a_n \\
b_{n+1}=a_n+[キ]b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
(3)$a_n=[ク] \cdot {[ケ]}^{n-1} (n=1,\ 2,\ 3,\ \cdots)$である.
(4)$\displaystyle c_n=\frac{b_n}{2^n}$とおくと,$\displaystyle c_{n+1}=c_n+\frac{[コ]}{[サ]} (n=1,\ 2,\ 3,\ \cdots)$である.よって,$\displaystyle c_n=\frac{[シ]n+[ス]}{[セ]}$,つまり$b_n={[ソ]}^{n-2}([タ]n+[チ]) (n=1,\ 2,\ 3,\ \cdots)$である.ゆえに
\[ f_n(x)={[ツ]}^{n-2}([テ]x+[ト]n+[ナ])e^{2x} \quad (n=1,\ 2,\ 3,\ \cdots) \]
である.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
九州産業大学 私立 九州産業大学 2014年 第3問
放物線$y=x^2-4x+3$を$C$とする.放物線$C$と$x$軸との交点を$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とし,点$\mathrm{Q}$における放物線$C$の接線を$\ell$とする.

(1)放物線$C$の頂点の座標は$([ア],\ [イウ])$である.
(2)点$\mathrm{P}$の座標は$([エ],\ 0)$,点$\mathrm{Q}$の座標は$([オ],\ 0)$である.
(3)接線$\ell$の方程式は$y=[カ]x-[キ]$である.
(4)放物線$C$と$x$軸で囲まれた部分の面積は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)直線$y=-2x+k$が放物線$C$に接するとき,$k=[コ]$であり,この直線と接線$\ell$,および放物線$C$で囲まれた部分の面積は$\displaystyle \frac{[サ]}{[シ]}$である.
北海道薬科大学 私立 北海道薬科大学 2013年 第2問
次の各設問に答えよ.

(1)連立方程式

$\log_5 |x-7|+\log_5(20-y)=2$
$\log_{\frac{1}{3}}(5x+y-32)=-1$

を満たす実数$x,\ y$は,$x=[ア]$,$y=[イウ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$の初項から第$n$項までの和が$37n^2+15n$のとき一般項は
\[ a_n=[エオ](n-1)+[カキ] \]
であり,$a_n$が$2000$より大きくなるのは第$[クケ]$項からである.
松山大学 私立 松山大学 2013年 第4問
座標平面上において,$2$点$\mathrm{A}(-2,\ 5)$,$\mathrm{B}(7,\ -1)$を通る直線を$\ell$とする.また,点$\mathrm{P}$は放物線$y=-3x^2$上を動く.

(1)線分$\mathrm{AB}$の長さは$[ア] \sqrt{[イウ]}$である.

(2)直線$\ell$の方程式は$\displaystyle y=-\frac{[エ]}{[オ]}x+\frac{[カキ]}{[ク]}$である.

(3)$\triangle \mathrm{ABP}$の面積の最小値は$\displaystyle \frac{[ケコ]}{[サ]}$であり,このとき点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[シ]}{[ス]},\ \frac{[セソ]}{[タチ]} \right)$である.
スポンサーリンク

「イウ」とは・・・

 まだこのタグの説明は執筆されていません。