タグ「ふたつ」の検索結果

1ページ目:全11問中1問~10問を表示)
岡山大学 国立 岡山大学 2016年 第2問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s,\ t$をそれぞれ$u,\ v$を用いて表せ.
(3)点$\mathrm{P}$が$xy$平面内の直線$ax+by=1 (a^2+b^2 \neq 0)$上を動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
岡山大学 国立 岡山大学 2016年 第4問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s$を$u,\ v$を用いて表せ.
(3)$\ell$は$xy$平面内の直線で,原点$\mathrm{O}$を通らないものとする.直線$\ell$上を点$\mathrm{P}$が動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
早稲田大学 私立 早稲田大学 2016年 第3問
同じ大きさのカードが$8$枚ある.カードそれぞれに$1$から$8$までの整数がひとつ書かれており,それぞれの整数は$1$枚にのみ書かれている.壺にこれら$8$枚のカードを入れる.

(1)この壺から無作為に$3$枚のカードを同時に引く.引いたカードの$2$枚には,$1,\ 2,\ 3$のうちのどれかふたつの数字が書かれており,かつ,残りの$1$枚には,$4$から$8$までのどれかひとつの数字が書かれている確率は$[チ]$である.
(2)$(1)$で引いたカードをすべて壺に戻す.壺から無作為に$3$枚のカードを同時に引き,それらを戻さずに,続けて無作為に$2$枚のカードを同時に引く.最初に引いた$3$枚のカードには,$1,\ 2,\ 3$のうちのどれかふたつの数字と,$4$から$8$までのどれかひとつの数字が書かれており,かつ,最後に引いた$2$枚のカードには,$7,\ 8$のうちのどれかひとつの数字と,$1$から$6$までのどれかひとつの数字が書かれている確率は$[ツ]$である.
(3)$(2)$で引いたカードをすべて壺に戻す.次に,$8$個の箱を横に並べ,左から順に$1$から$8$までの番号をつける.壺から$1$枚ずつカードを無作為に引き,引いた順番と同じ番号の箱にカードを入れていく.例えば,$3$枚目に引いたカードは番号$3$の箱に入れる.このとき,奇数が書かれているすべてのカード($1,\ 3,\ 5,\ 7$の$4$枚)は,カードの数字と同じ番号の箱に入り,かつ,偶数が書かれているすべてのカード($2,\ 4,\ 6,\ 8$の$4$枚)は,カードの数字と異なる番号の箱に入っている確率は$[テ]$である.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
$\triangle \mathrm{ABC}$が与えられているとする.以下の問いに答えよ.

(1)辺$\mathrm{AB}$上の点$\mathrm{P}$,辺$\mathrm{AC}$上の点$\mathrm{Q}$が,それぞれ$\mathrm{AP}:\mathrm{PB}=s:1-s$,$\mathrm{AQ}:\mathrm{QC}=t:1-t$と辺$\mathrm{AB}$,$\mathrm{AC}$を内分するように与えられているとする(即ち$0<s<1$,$0<t<1$とする).直線$\mathrm{PQ}$が$\triangle \mathrm{ABC}$の重心を通るための必要十分条件は$3st=s+t$であることを示せ.
(2)直線$\ell$を$\triangle \mathrm{ABC}$の重心を通る直線とする.$\ell$によって,$\triangle \mathrm{ABC}$はふたつの図形(三角形と四角形,またはふたつの三角形)に分割される.これらの図形の面積のうち,大きい方を$S_1$,小さい方を$S_2$とする.ただし,面積が等しい場合も同じ記号を用い,$S_1=S_2$とする.

(i) $\ell$が$\triangle \mathrm{ABC}$のいずれかの頂点を通ることは$S_1=S_2$となるための必要十分条件であることを示せ.
(ii) $\displaystyle \frac{S_1}{S_2}$の最大値と最小値を求めよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
三重大学 国立 三重大学 2011年 第4問
ふたつの曲線
\[ C_1:y=\cos x \ (0 \leqq x \leqq 2\pi),\quad C_2:y=\sin x \ (0 \leqq x \leqq 2\pi) \]
が囲む領域を$D$とする.ただし$D$は境界を含むものとする.

(1)$C_1$と$C_2$の交点の$x$座標を求め,$D$の面積を求めよ.
(2)点$(x,\ y)$が$D$内を動くとき,$\displaystyle \frac{1}{2}x+y$の最大値と最小値を求めよ.
三重大学 国立 三重大学 2010年 第4問
$0<m<1$とする.$f(x)=x^2,\ g(x)=mx$とおく.この$f(x)$と$g(x)$を$0 \leqq x \leqq 1$の範囲で考える.

(1)放物線$y=f(x)$と直線$y=g(x)$および直線$x=1$で囲まれるふたつの図形の面積の和を$S(m)$とする.$S(m)$を最小にする$m$とそのときの値を求めよ.
(2)$0 \leqq x \leqq 1$の範囲での$|f(x)-g(x)|$の最大値を$h(m)$とする.$h(m)$を最小にする$m$とそのときの値を求めよ.
スポンサーリンク

「ふたつ」とは・・・

 まだこのタグの説明は執筆されていません。