タグ「なす角」の検索結果

24ページ目:全241問中231問~240問を表示)
山梨大学 国立 山梨大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(1,\ 3)$のなす角$\theta$を求めよ.
(2)放物線$y=-x^2+4x+8$と$x$軸とで囲まれた図形に内接し,$x$軸上に$2$つの頂点をもつ長方形の面積の最大値を求めよ.
(3)整数$5^{2010}$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(4)関数$y=\sin x-\cos x+\sqrt{2} \ (0 \leqq x \leqq 2\pi)$の最大値と最小値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
底面が正六角形ABCDEFで頂点がOの正六角錐O-ABCDEFがある.底面の辺の長さを$a$,$\text{OA}=\text{OB}=\text{OC}=\text{OD}=\text{OE}=\text{OF}=2a$とする.2つの面$\triangle$OABと$\triangle$OBCのなす角を$\theta$とするとき,$\cos \theta$を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
自治医科大学 私立 自治医科大学 2010年 第10問
$2$直線$x+y-5=0$,$(\sqrt{3}-2)x-y-4 \sqrt{3}=0$のなす角を$\theta$とする($\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$).$\displaystyle \frac{\pi}{\theta}$の値を求めよ.
龍谷大学 私立 龍谷大学 2010年 第2問
大きさ$\sqrt{3}$のベクトル$\overrightarrow{a}$と大きさ$2$のベクトル$\overrightarrow{b}$を考える.$\overrightarrow{a}$と$\overrightarrow{b}$のなす角$\theta$が$\displaystyle \cos \theta=\frac{1}{4}$を満たすとき,次の問いに答えなさい.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積を求めなさい.
(2)$\overrightarrow{p}=(\cos t) \overrightarrow{a}+(\sin t) \overrightarrow{b}$,$\overrightarrow{q}=(-\sin t) \overrightarrow{a}+(\cos t) \overrightarrow{b}$とするとき,${|\overrightarrow{q|-\overrightarrow{p}}}^2$を$t$で表しなさい.
(3)$0 \leqq t \leqq \pi$の範囲で(2)の${|\overrightarrow{q|-\overrightarrow{p}}}^2$の最大値と最小値を求めなさい.
獨協医科大学 私立 獨協医科大学 2010年 第4問
原点を$\mathrm{O}$とする座標平面上の動点$\mathrm{P}$の位置ベクトル$\overrightarrow{\mathrm{OP}}=(x,\ y)$が,時刻$t$の関数として,$x=e^{-2t} \cos 2\pi t$,$y=e^{-2t} \sin 2\pi t$で表されている.

(1)点$\mathrm{P}$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$の大きさは,$|\overrightarrow{v}|=[ ] \sqrt{[ ]+\pi^2}e^{-2t}$である.
(2)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\alpha$とするとき,$\displaystyle \cos \alpha=\frac{[ ]}{\sqrt{[ ]+\pi^2}}$であり,これは時刻$t$によらない一定値である.
(3)$n$を自然数として,$t=n-1$から$t=n$までの間に点$\mathrm{P}$が動く道のり$S_n$は,
\[ S_n=\sqrt{[ ]+\pi^2} \left( e^{[ ]}-[ ] \right) e^{-2n} \]
である.また,$\displaystyle \sum_{n=1}^{\infty}S_n=\sqrt{[ ]+\pi^2}$である.
(4)$t=0$から$\displaystyle t=\frac{1}{4}$までの間に点$\mathrm{P}$がえがく曲線と,$x$軸,$y$軸とで囲まれる図形の面積$I$は,$\displaystyle I=\int_a^b y \, dx=\int_{\frac{1}{4}}^0 y \frac{dx}{dt} \, dt$で求められる.このとき$a=[ ]$,$b=[ ]$で,$\displaystyle I=\int_0^{\frac{1}{4}} e^{-4t} \{ \sin [$*$] \pi t+\pi (1-\cos [$*$] \pi t) \} \, dt$である.
首都大学東京 公立 首都大学東京 2010年 第2問
原点をOとする座標平面上のベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$は$|\overrightarrow{\mathrm{OA}}|=\sqrt{17},\ |\overrightarrow{\mathrm{OB}}|=\sqrt{10}$を満たし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$が$\displaystyle \cos \theta =- \frac{13}{\sqrt{170}}$を満たしている.ベクトル$\overrightarrow{u},\ \overrightarrow{v}$を$\displaystyle \overrightarrow{u} = \frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2},\ \overrightarrow{v}=\frac{\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}}{2}$で定める.このとき,以下の問いに答えなさい.

(1)長さ$|\overrightarrow{u}|,\ |\overrightarrow{v}|$と内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求めなさい.
(2)実数$t$に対して$\overrightarrow{\mathrm{OP}} = t \overrightarrow{u}+(1-t)\overrightarrow{v}$とおく.長さ$|\overrightarrow{\mathrm{OP}}|$を最小にする$t$の値を求めなさい.また,そのときの長さ$|\overrightarrow{\mathrm{OP}}|$を求めなさい.
愛知県立大学 公立 愛知県立大学 2010年 第4問
原点をOとする座標平面上に2点P$(a,\ c)$およびQ$(b,\ d)$をとり,$\triangle$OPQを考える.線分OPが$x$軸の正の部分となす角を$\theta$とする.ただし,$\theta$は時計の針の回転と逆の向きを正とする.このとき,以下の問いに答えよ.

(1)$\sin \theta$と$\cos \theta$を$a,\ c$の式で表せ.
(2)点Qを原点の周りに$-\theta$だけ回転させた点を$(x,\ y)$とするとき,$x,\ y$を$a,\ b,\ c,\ d$で表せ.
(3)$\triangle$OPQの面積を$a,\ b,\ c,\ d$で表せ.
(4)一次変換
\[ A=\biggl( \begin{array}{cc}
\sqrt{2}+\sqrt{5} & 3 \\
1 & \sqrt{2}-\sqrt{5}
\end{array} \biggr) \]
によって,点P,Qがそれぞれ点P$^\prime$,Q$^\prime$に移されるものとする.$\triangle$OP$^\prime$Q$^\prime$の面積は$\triangle$OPQの何倍か.
高崎経済大学 公立 高崎経済大学 2010年 第2問
$2$直線$2x+y+1=0,\ 2x-ky+2=0$のなす角を$\theta \ (0^\circ \leqq \theta \leqq 90^\circ)$とする.$\theta=45^\circ$となるように,定数$k$の値を定めよ.
会津大学 公立 会津大学 2010年 第1問
$(1)$の問いに答えよ.また,$(2)$から$(6)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int_1^e x \log x \, dx=[ ]$
(ii) $\displaystyle \int \sin^3 x \cos x \, dx=[ ]$

(2)$y=\sqrt[5]{2x-1}$のとき,$\displaystyle \frac{dy}{dx}=[ ]$である.
(3)方程式$2^{x^2-1}4^{x+2}=8^{x+3}$の解は$x=[ ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ ]$である.
(5)2直線$y=3x$と$\displaystyle y=\frac{x}{3}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(6)座標平面上で次の連立不等式
\[ \left\{
\begin{array}{l}
|x|+|y| \leqq 2 \\
x^2+y^2 \geqq 2
\end{array}
\right. \]
の表す領域の面積は[ ]である.
スポンサーリンク

「なす角」とは・・・

 まだこのタグの説明は執筆されていません。