タグ「さいころ」の検索結果

15ページ目:全413問中141問~150問を表示)
津田塾大学 私立 津田塾大学 2014年 第1問
次の問に答えよ.

(1)$1$個のサイコロを$3$回投げるとき,出た目の数の積が$3$の倍数となる確率を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{3}} x \sin x \, dx$を求めよ.

(3)$\displaystyle {\left( \frac{1+\sqrt{3}i}{2} \right)}^{2014}$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第3問
次の問いに答えよ.

(1)$1$つのサイコロを$3$回投げたとき,$1$の目が奇数回出る確率は$[シ]$である.
(2)袋の中に赤玉$8$個,白玉$6$個の合計$14$個の玉が入っている.この袋から一度に$6$個の玉を取り出したとき,赤玉が$2$個,白玉が$4$個取り出される確率は$[ス]$である.
(3)袋の中に赤玉$n-7$個,白玉$7$個の合計$n$個の玉が入っている.ただし$n \geqq 10$とする.この袋から一度に$5$個の玉を取り出したとき,赤玉が$3$個,白玉が$2$個取り出される確率を$P_n$とする.$P_n$が最大となる$n$の値は$[セ]$である.
龍谷大学 私立 龍谷大学 2014年 第3問
図のようなマス目で,初めに$\mathrm{S}$のマスにコマを置く.さいころをふり,下のルールに従ってコマを動かして,得点するゲームを行う.なお,$\mathrm{G}$のマスに入ったらゲームを終了する.

\begin{tabular}{|c|c|c|}
\hline
\phantom{$\mathrm{G}$} & $\mathrm{G}$ & \phantom{$\mathrm{G}$} \\ \hline
& $\mathrm{S}$ & \\ \hline
\end{tabular}

\begin{itemize}
コマを動かすルール

さいころの目 \qquad 動かし方
\qquad $1,\ 2,\ 3$ \qquad 上に$1$マス
\qquad \phantom{$1,\ $} $4$ \phantom{$,\ 3$} \qquad \ 右に$1$マス
\qquad \phantom{$1,\ $} $5$ \phantom{$,\ 3$} \qquad \ 左に$1$マス
\qquad \phantom{$1,\ $} $6$ \phantom{$,\ 3$} \qquad \ 動かさない
ただし,動かす先のマスがない場合はコマを動かさない.

得点のルール

$(ⅰ)$ $1$回目の試行で$\mathrm{G}$のマスに入ったときは$3$点とする.
$(ⅱ)$ $2$回目の試行で$\mathrm{G}$のマスに入ったときは$2$点とする.
$(ⅲ)$ $3$回目の試行で$\mathrm{G}$のマスに入ったときは$1$点とする.
$\tokeishi$ $3$回までの試行で$\mathrm{G}$のマスに入らなかったときは$0$点とし,ゲームを終了する.

\end{itemize}

(1)得点が$2$点の確率を求めなさい.
(2)得点が$0$点の確率を求めなさい.
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$1$次不等式$\displaystyle \frac{7+4x}{3} \geqq \frac{x+1}{2}-x$の解は$[$1$]$である.
(2)$\displaystyle \frac{1}{2+\sqrt{3}-\sqrt{5}}$の分母を有理化すると$[$2$]$となる.
(3)$A,\ B,\ C$を定数とする.$\displaystyle \frac{x^2+2x+17}{x^3-x^2-5x-3}=\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-3}$が$x$についての恒等式であるとき,$A=[$3$]$,$B=[$4$]$,$C=[$5$]$である.
(4)実数$a$に対して,$a$以下の整数で最大のものを$[a]$で表す.このとき,$[\log_2 7]=[$6$]$,$\displaystyle [\log_3 \frac{1}{25}]=[$7$]$である.
(5)大小$2$個のさいころを同時に投げる.このとき,目の和が$9$以下になる確率は$[$8$]$であり,目の積が$9$以下になる確率は$[$9$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とし,頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろすとする.このとき,線分$\mathrm{AH}$の長さは$[$10$]$であり,$\triangle \mathrm{ABC}$の面積は$[$11$]$である.
安田女子大学 私立 安田女子大学 2014年 第4問
$1$から$6$の目が等確率で出るサイコロがある.$\mathrm{A}$さんを含む$n$人に,ひとり一個ずつサイコロを渡し,同時に投げさせて,出た目の数の平均値を求める.

(1)$n=2$のとき,$\mathrm{A}$さんのサイコロの目が平均値と一致する確率を求めよ.
(2)$n=3$のとき,$\mathrm{A}$さんのサイコロの目が平均値と一致する確率を求めよ.
(3)$n=4$のとき,$\mathrm{A}$さんのサイコロの目が平均値と一致する確率を求めよ.
吉備国際大学 私立 吉備国際大学 2014年 第2問
正二十面体のサイコロを考える.各面に$1$から$20$までの整数が一つずつ書いてある.

(1)このサイコロを$1$回ふるとき,出る目の数が素数である確率を求めよ.
(2)このサイコロを$1$回ふるとき,出る目の数が$3$の倍数である確率を求めよ.
(3)このようなサイコロを$2$回ふるとき,出る目の数の積が$3$の倍数であって$9$の倍数でない確率を求めよ.
昭和大学 私立 昭和大学 2014年 第2問
次の問いに答えよ.

(1)分母が$60$で,分子が$59$以下の自然数である分数$\displaystyle \frac{1}{60},\ \frac{2}{60},\ \frac{3}{60},\ \cdots,\ \frac{59}{60}$の中でこれ以上約分できない分数(既約分数)は何個あるか.
(2)$3$つのさいころを同時に投げ,出た目の最大値を$m$とするとき,$m=5$となる確率を求めよ.ただし,$3$つのさいころのすべての目の出方は同様に確からしいものとする.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{E}$とする.直線$\mathrm{BE}$と辺$\mathrm{AC}$の交点を$\mathrm{F}$とする.このとき,$\mathrm{AF}:\mathrm{FC}$を求めよ.
(4)$108$の正の約数の総和を求めよ.
昭和大学 私立 昭和大学 2014年 第2問
次の問いに答えよ.

(1)分母が$60$で,分子が$59$以下の自然数である分数$\displaystyle \frac{1}{60},\ \frac{2}{60},\ \frac{3}{60},\ \cdots,\ \frac{59}{60}$の中でこれ以上約分できない分数(既約分数)は何個あるか.
(2)$3$つのさいころを同時に投げ,出た目の最大値を$m$とするとき,$m=5$となる確率を求めよ.ただし,$3$つのさいころのすべての目の出方は同様に確からしいものとする.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{E}$とする.直線$\mathrm{BE}$と辺$\mathrm{AC}$の交点を$\mathrm{F}$とする.このとき,$\mathrm{AF}:\mathrm{FC}$を求めよ.
(4)$108$の正の約数の総和を求めよ.
大同大学 私立 大同大学 2014年 第6問
次の$[ノ]$から$[リ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$1$つのさいころを$3$回続けて投げるとき,出た目が$3$回とも同じである確率は$\displaystyle \frac{[ノ]}{[ハ][ヒ]}$,$3$回とも異なる確率は$\displaystyle \frac{[フ]}{[ヘ]}$であり,$3$回のうち$2$回は同じで$1$回だけ他と異なる確率は$\displaystyle \frac{[ホ]}{[マ][ミ]}$である.
(2)$a,\ b$を自然数とし,$x$を実数とするとき,以下の$[ム]$から$[リ]$の$[ ]$に入る正しい記述を次の$①$~$④$の中から選び,その番号を記述せよ.

\mon[$①$] 必要十分条件である
\mon[$②$] 必要条件であるが十分条件でない
\mon[$③$] 十分条件であるが必要条件でない
\mon[$④$] 必要条件でも十分条件でもない

(i) $a$が$2$の倍数であることは,$a^2$が$2$の倍数であるための$[ム]$
(ii) $a$が$4$の倍数であることは,$a^2$が$4$の倍数であるための$[メ]$
(iii) $a$が$4$の倍数であることは,$a^2$が$8$の倍数であるための$[モ]$
\mon[$\tokeishi$] $a$が$2$の倍数または$b$が$2$の倍数であることは,$ab$が$6$の倍数であるための$[ヤ]$
\mon[$\tokeigo$] $a$が$2$の倍数または$b$が$3$の倍数であることは,$ab$が$6$の倍数であるための$[ユ]$
\mon[$\tokeiroku$] $x^2+x-2=0$は,$x=1$であるための$[ヨ]$
\mon[$\tokeishichi$] $x>2$は,$x^2+3x-4>0$であるための$[ラ]$
\mon[$\tokeihachi$] $x^2 \leqq x+6$は,$x<3$であるための$[リ]$
東京女子大学 私立 東京女子大学 2014年 第5問
片方の面が白色,もう片方の面が黒色のカードを一枚用意する.さいころをひとつ投げ,目が$2$以下ならばカードを裏返し,$3$以上の場合はそのままにする.最初はカードの白色の面が表であるとし,さい ころを$n$回投げたあとでカードの表が白色である確率を$p_n$とする.

(1)$p_1$および$p_2$を求めよ.
(2)$p_{n+1}$を$p_n$を用いて表せ.
(3)$p_n$を求めよ.
(4)$\displaystyle \lim_{n \to \infty} p_n$を求めよ.
スポンサーリンク

「さいころ」とは・・・

 まだこのタグの説明は執筆されていません。