タグ「z^2」の検索結果

4ページ目:全57問中31問~40問を表示)
中部大学 私立 中部大学 2014年 第4問
$x,\ y,\ z$は実数で,$x+y+z=1$,$x^2+y^2+z^2=3$を満たしている.このとき,次の問いに答えよ.

(1)$xy+yz+zx$の値を求めよ.
(2)$xyz=r$とおく.$x,\ y,\ z$が解となる$t$を未知数とする$3$次方程式を求めよ.
(3)$r$がとり得る値の範囲を求めよ.
同志社大学 私立 同志社大学 2014年 第2問
座標空間内の球面$x^2+y^2+z^2=9$上に$3$点$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 2)$,$\mathrm{C}(1,\ -2,\ 2)$をとる.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に,原点$\mathrm{O}$から下ろした垂線の足$\mathrm{H}$の座標を求めよ.
(3)球面上を動く点$\mathrm{P}$を頂点とする四面体$\mathrm{PABC}$を考え,その体積を$V$とする.$V$の最大値と,そのときの点$\mathrm{P}$の座標を求めよ.
北里大学 私立 北里大学 2014年 第1問
次の文中の$[ア]$~$[ヒ]$にあてはまる最も適切な数を答えなさい.

(1)複素数$z=-1+i$を考える.ここで,$i$は虚数単位である.このとき,
\[ z+z^2+z^3+z^4=[ア]+[イ]i \]
である.また,
\[ \sum_{n=1}^{12} z^n=[ウ][エ]+[オ][カ] i \]
となる.
(2)$0 \leqq \theta \leqq \pi$の範囲における関数$\displaystyle f(\theta)=\frac{1}{3} \sin \theta+\frac{1}{2} \cos^2 \theta-\frac{2}{3}$の最小値は$\displaystyle \frac{[キ]}{[ク]}$,最大値は$\displaystyle \frac{[ケ]}{[コ]}$である.

(3)循環小数$0. \dot{2}01 \dot{4}$を分数で表すと,
\[ 0. \dot{2}01 \dot{4}=\frac{\kakkofour{サ}{シ}{ス}{セ}}{\kakkofour{ソ}{タ}{チ}{ツ}} \]
となる.
(4)平面上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とすると,$|\overrightarrow{\mathrm{AP}}|=2 |\overrightarrow{\mathrm{BP}}|$を満たす点$\mathrm{P}$の軌跡は,
\[ \overrightarrow{\mathrm{MO}}=\frac{[テ]}{[ト]} \overrightarrow{\mathrm{MA}} \]
を満たす点$\mathrm{O}$を中心とする半径
\[ \frac{[ナ]}{[ニ]} |\overrightarrow{\mathrm{MA}}| \]
の円である.
(5)同じ大きさの赤玉と白玉が何個か袋に入っている.よくかきまぜた後,この袋の中から同時に$2$個の玉を取り出したとき,$2$個とも赤の確率を$p$,$2$個のうち$1$個が赤,$1$個が白の確率を$q$,$2$個とも白の確率を$r$と書くとすると,それらの比例関係は次のようになった.
\[ p:q:r=14:20:5 \]
この袋の中の赤玉の個数は$[ヌ]$,白玉の個数は$[ネ]$である.
(6)$a,\ b,\ c$は次の方程式を満たす整数とする.
\[ a \log_{10} \frac{5}{6}+b \log_{10} 15+c \log_{10} \frac{10}{9}=\log_{10} 5000 \]
このとき,$a=[ノ]$,$b=[ハ]$,$c=[ヒ]$である.
上智大学 私立 上智大学 2014年 第2問
座標空間の原点$\mathrm{O}$を通りベクトル$(1,\ \sqrt{3},\ 2 \sqrt{3})$に平行な直線を$\ell$とし,点$\mathrm{A}$の座標を$(\sqrt{3}+3,\ 3 \sqrt{3}+3,\ 6-2 \sqrt{3})$とする.このとき,$\mathrm{O}$を頂点とする円錐$C$は,底面の中心$\mathrm{H}$が$\ell$上にあり,底面の円周が$\mathrm{A}$を通るとする.

(1)$\displaystyle \angle \mathrm{AOH}=\frac{[コ]}{[サ]}\pi$である.ただし,$0 \leqq \angle \mathrm{AOH}<\pi$とする.
(2)$\mathrm{H}$の座標は
\[ \left( \sqrt{[シ]},\ [ス],\ [セ] \right) \]
である.
(3)点$(\sqrt{3},\ y,\ z)$が$C$の底面上(境界を含む)にあるとき,常に
\[ y+[ソ]z+[タ]=0 \]
が成り立つ.
(4)点$(\sqrt{3},\ y,\ z)$が$C$の側面上(境界を含む)にあるとき,常に
\[ [チ]y^2+[ツ]yz+[テ]z^2+[ト]y+[ナ]z+21=0 \]
が成り立つ.また,このときの$z$の最大値は
\[ [ニ]+\frac{[ヌ]}{[ネ]} \sqrt{[ノ]} \]
である.
南山大学 私立 南山大学 2014年 第1問
$[ ]$の中に答を入れよ.

(1)$a$を実数とするとき,不等式$x^2-2ax+2a^2+a-1>0$がすべての実数$x$に対して成り立つような$a$の値の範囲を求めると$[ア]$である.
(2)$n$を整数とするとき,$\displaystyle \frac{3n-2}{5}$より大きな整数のうち最小のものが$6$となるような$n$の値をすべて求めると$n=[イ]$である.
(3)複素数$\displaystyle z=\frac{2-i}{1+i}$について,$z^2-z$を計算すると$z^2-z=[ウ]$である.さらに,$z^4-2z^3+3z^2-3z$を計算すると$z^4-2z^3+3z^2-3z=[エ]$である.
(4)$a>0$とし,$x>0$において$\displaystyle y=\left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)$を考える.$t=\log_{10} x$,$b=\log_{10}a$として$y$を$t$と$b$で表すと$y=[オ]$である.また,$x$の方程式$\displaystyle \left( \log_{10}ax^2 \right) \left( \log_{10} \frac{a}{x} \right)=1$が異なる$2$つの解$\alpha,\ \beta$をもつとき,$\alpha\beta$を$a$で表すと$\alpha\beta=[カ]$である.
(5)座標平面上の$3$点$\mathrm{A}(4,\ 6)$,$\mathrm{B}(1,\ 3)$,$\mathrm{C}(4,\ 2)$を考える.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る円の半径$r$を求めると$r=[キ]$である.また,点$\mathrm{A}$を通る直線が,この円と$\mathrm{A}$とは異なる点$\mathrm{P}$で交わり,$\mathrm{AP}=\sqrt{2}r$となるとき,この直線の傾き$k$を求めると$k=[ク]$である.
横浜国立大学 国立 横浜国立大学 2013年 第1問
実数$a,\ x,\ y,\ z$が
\[ \left\{
\begin{array}{l}
x+y+z=a \\
x^2+y^2+z^2=a^2-2a+14 \\
x^3+y^3+z^3=a^3-3a^2+3a+18
\end{array}
\right. \]
を満たすとき,次の問いに答えよ.

(1)$xy+yz+zx$および$xyz$を$a$の式で表せ.
(2)$x,\ y,\ z$のうち少なくとも2つが等しいとき,$a,\ x,\ y,\ z$を求めよ.
秋田大学 国立 秋田大学 2013年 第2問
$a,\ b,\ c,\ x,\ y,\ z$はすべて正の実数である.次の問いに答えよ.

(1)不等式$(a^2+b^2+c^2)(x^2+y^2+z^2) \geqq (ax+by+cz)^2$が成り立つことを証明せよ.
(2)(1)において等号が成り立つのはどのようなときかを示せ.
(3)$a^2+b^2+c^2=25$,$x^2+y^2+z^2=36$,$ax+by+cz=30$のとき,$\displaystyle \frac{a+b+c}{x+y+z}$の値を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第3問
$\theta$は$0 \leqq \theta \leqq \pi$をみたす実数とする.$xyz$空間内の平面$z=0$上に$2$点
\[ \mathrm{P}_\theta (\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}_\theta (2 \cos \theta,\ 2 \sin \theta,\ 0) \]
をとり,$\theta$を$0 \leqq \theta \leqq \pi$の範囲で動かすとき,線分$\mathrm{P}_\theta \mathrm{Q}_\theta$が通過する部分を$D$とする.空間内の$z \geqq 0$の部分において,底面が$D$,$\mathrm{P}_\theta \mathrm{Q}_\theta$上の各点での高さが$\displaystyle \frac{2}{\pi}\theta$の立体$K$を考える.半球$B:x^2+y^2+z^2 \leqq 2^2$,$z \geqq 0$と$K$の共通部分を$L$とするとき,次の問いに答えよ.

(1)$B$を平面$z=t (0 \leqq t<2)$で切った切り口の円の半径を$t$を用いて表せ.
(2)$L$の体積を求めよ.
神戸薬科大学 私立 神戸薬科大学 2013年 第1問
次の問いに答えよ.

(1)$7^{2013}$の$1$の位の数字は$[ ]$である.
(2)$a,\ b$を定数とする.整式$P(x)=x^3+2x^2+ax+b$は$x-2$で割り切れるが,$x+3$で割ると$5$余る.このとき$a=[ ]$,$b=[ ]$である.
(3)$x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+3xyz$を因数分解すると$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2013年 第4問
$xyz \neq 0$となる実数$x,\ y,\ z$に対して$2^x=3^y=\sqrt[3]{6^z}$であるとき,$x$を$z$で表すと$x=[ ]$となり,$y$を$z$で表すと$y=[ ]$となる.さらに,$\displaystyle \frac{1}{x}+\frac{1}{y}=z^2$を満たすとき$z=[ ]$である.
スポンサーリンク

「z^2」とは・・・

 まだこのタグの説明は執筆されていません。