タグ「y^2」の検索結果

58ページ目:全631問中571問~580問を表示)
愛媛大学 国立 愛媛大学 2010年 第2問
直線$y=a(x+2)$と円$x^2+y^2-4x=0$は異なる2点P,Qで交わっているとする.また,線分PQの中点をRとする.

(1)定数$a$の値の範囲を求めよ.
(2)Rの座標を$a$を用いて表せ.
(3)原点Oと点Rの距離を求めよ.
(4)$a$の値が(1)で求めた範囲を動くとき,点Rの軌跡を求めよ.
島根大学 国立 島根大学 2010年 第3問
$a \geqq 0$とする.円$C_1:x^2+y^2=1$と円$C_2:x^2+y^2-10x+20-a=0$について,次の問いに答えよ.

(1)$C_1$上の点Pと$C_2$上の点Qとの距離PQの最小値を$a$を用いて表せ.
(2)$a=11$のとき,2つの円$C_1$と$C_2$の共通接線をすべて求めよ.
島根大学 国立 島根大学 2010年 第3問
次の問いに答えよ.

(1)双曲線$C:x^2-y^2=-1$上の点$(1,\ \sqrt{2})$における接線$\ell$の方程式を求めよ.
(2)$C$と$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
和歌山大学 国立 和歌山大学 2010年 第5問
双曲線$x^2-y^2=1$の$x>0$の部分を$C$とする.$a$を正の定数とし,点P$\displaystyle (0,\ \frac{2}{a})$に最も近い$C$上の点をQとする.また,点R$(0,\ -a)$を通る直線が点Sで$C$に接している.このとき,次の問いに答えよ.

(1)点Qの座標および直線PQの傾きを$a$を用いて表せ.
(2)点Sの座標および直線RSの傾きを$a$を用いて表せ.
(3)3点P,Q,Rを通る円の直径を$a$を用いて表せ.
三重大学 国立 三重大学 2010年 第2問
次の問いに答えよ.

(1)$p,\ q,\ r,\ s$を整数とする.このとき$p+q \sqrt{2}=r+s\sqrt{2}$が成り立つならば,$p=r$かつ$q=s$となることを示せ.ここで$\sqrt{2}$が無理数であることは使ってよい.
(2)自然数$n$に対し,$(3+2\sqrt{2})^n=a_n+b_n \sqrt{2}$を満たす整数$a_n,\ b_n$が存在することを数学的帰納法により示せ.
(3)$a_n,\ b_n$を(2)のものとする.このときすべての自然数$n$について$(x,\ y)=(a_n,\ b_n)$は方程式$x^2-2y^2=1$の解であることを数学的帰納法により示せ.
三重大学 国立 三重大学 2010年 第2問
次の問いに答えよ.

(1)$p,\ q,\ r,\ s$を整数とする.このとき$p+q \sqrt{2}=r+s\sqrt{2}$が成り立つならば,$p=r$かつ$q=s$となることを示せ.ここで$\sqrt{2}$が無理数であることは使ってよい.
(2)自然数$n$に対し,$(3+2\sqrt{2})^n=a_n+b_n \sqrt{2}$を満たす整数$a_n,\ b_n$が存在することを数学的帰納法により示せ.
(3)$a_n,\ b_n$を(2)のものとする.このときすべての自然数$n$について$(x,\ y)=(a_n,\ b_n)$は方程式$x^2-2y^2=1$の解であることを数学的帰納法により示せ.
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点$\mathrm{P}(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)$\mathrm{P}$が動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点P$(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)Pが動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
徳島大学 国立 徳島大学 2010年 第1問
放物線$\displaystyle y=\frac{2}{3}x^2$を$C_1$とし,円$x^2+y^2=1$の$y \geqq 0$を満たす部分を$C_2$とする.$C_1$と$C_2$の交点をP,Qとし,原点をOとする.

(1)P,Qの座標を求めよ.
(2)扇形OPQの面積を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。