タグ「y^2」の検索結果

53ページ目:全631問中521問~530問を表示)
自治医科大学 私立 自治医科大学 2011年 第16問
$a$を実数の定数とする.円$x^2+y^2+(3a+1)x-(a+3)y-7a-10=0$は,$a$の値にかかわらず,常に定点を通る.その定点のなかで,座標平面上の第$1$象限にある点の$y$座標の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)$x^2-4x+3<0$を満たすような$x^2-6x+8=0$の解を求めよ.
(2)座標平面上の$2$点$(2,\ 3)$と$(4,\ 2)$を通る直線に垂直に交わり,かつ円$x^2+y^2=5$に接する直線の方程式を求めよ.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=2:(1+\sqrt{3}):\sqrt{2}$であるとき,$\angle \mathrm{B}$の大きさを求めよ.また,$\sin A$の値を求めよ.
自治医科大学 私立 自治医科大学 2011年 第17問
$2$つの円$C_1:x^2+y^2-24x-10y+44=0$,$C_2:x^2+y^2-4x+10y+4=0$について考える.$C_1$と$C_2$の相異なる$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを$L$としたとき,$\displaystyle \frac{L^2}{10}$の値を求めよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
南山大学 私立 南山大学 2011年 第2問
正の実数$a,\ b$について,座標平面上に$2$つの円$C_1:x^2+y^2-8x-20y+91=0$,$C_2:x^2+y^2+4x-4y+8-a=0$と放物線$D:y=b(x-4)^2-2$を考える.

(1)$C_1$の中心の座標と半径を求めよ.
(2)$C_1$が$C_2$の外部にあるとき,$a$のとりうる値の範囲を求めよ.
(3)$C_1$と$C_2$が$1$点$\mathrm{P}$を共有し,$\mathrm{P}$を除いて$C_1$が$C_2$の外部にあるとき,$\mathrm{P}$の座標と$\mathrm{P}$における$C_2$の接線の方程式を求めよ.
(4)$C_1$と$D$が異なる$2$点のみを共有するとき,$b$の値を求めよ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)実数$x,\ y$が$x^2+y^2=5$を満たすとき,$x^2+3y+1$の最大値は$[ア]$であり,最小値は$[イ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & 1
\end{array} \right)$が$b+c=1$,$b>c$,$A^2+3A-3E=O$を満たすとき,$a=[ウ]$,$b=[エ]$である.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$とする.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$のとき,$\displaystyle x+\frac{1}{x}=[ア]$,$\displaystyle x^3+\frac{1}{x^3}=[イ]$である.
(2)$x^2-x+y-6=0$,$y \geqq 0$のとき,$6x+y$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)$a>0$とする.円$x^2+y^2-2ax-4ay+4a^2-1=0$が$x$軸と接するとき,$a=[オ]$であり,直線$x+y-1=0$と接するとき,$a=[カ]$である.
(4)放物線$C:y=x^2-2$と直線$\ell:y=x$がある.$C$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C$と$\ell$によって囲まれる部分の面積は$[ク]$である.
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
名城大学 私立 名城大学 2011年 第3問
$xy$平面上に,$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(5,\ 0)$,円$C:x^2+lx+y^2+my+n=0$($l,\ m,\ n$は実数)があり,$C$が$\mathrm{A}$,$\mathrm{B}$を通るとき,次の問に答えよ.

(1)$m$がすべての実数値をとるとき,$C$の中心の軌跡を求めよ.
(2)$m$がすべての実数値をとるとき,$C$の半径の最小値を求めよ.
(3)$C$が$y$軸と接するとき,$C$の方程式を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。