タグ「y^2」の検索結果

50ページ目:全631問中491問~500問を表示)
茨城大学 国立 茨城大学 2011年 第2問
$a,\ b,\ c$は実数の定数で,$a>0, b \geqq 0$とする.実数$x,\ y$に関する条件$p,\ q,\ r$を次のように定める.
\begin{align}
& p:x^2+y^2 \leqq 1 \nonumber \\
& q:\left( x-\frac{1}{2} \right)^2+\left( y-\frac{1}{2} \right)^2 \leqq a^2 \nonumber \\
& r:y \leqq \sqrt{b}x+c \nonumber
\end{align}
以下の各問に答えよ.

(1)条件$q$が条件$p$であるための十分条件となるとき,$a$の値の範囲を求めよ.
(2)条件$r$が条件$p$であるための必要条件となるとき,$b,\ c$が満たす条件を求め,それを$bc$平面に図示せよ.
大阪教育大学 国立 大阪教育大学 2011年 第2問
一般項が$\displaystyle a_n=\frac{27}{10}\left( \frac{2}{3} \right)^{n-1}$で与えられる数列$\{a_n\}$の,初項から第$n$項までの和を$b_n$と表すとき,次の問に答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)楕円$\displaystyle \frac{x^2}{\displaystyle \left( \frac{43}{2}-b_n \right)^2}+\frac{y^2}{\displaystyle \left( \frac{81}{10}+b_n \right)^2}=1$の面積を$S_n$で表すとき.$S_n$が最大になる自然数$n$と,そのときの$S_n$の値を求めよ.
大阪教育大学 国立 大阪教育大学 2011年 第3問
座標平面上の円$x^2+y^2=1$を$C$とする.点Pが行列$A=\biggl( \begin{array}{cc}
1 & 1 \\
1 & 0
\end{array} \biggr)$で表される1次変換で点Qに移されるとき,次の問に答えよ.

(1)点Pが円$C$上を動くとき,点Qの軌跡を求め,図示せよ.
(2)(1)で求めた曲線で囲まれた図形の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第4問
座標平面上に点A$(2,\ 0)$をとる.円$C:x^2+y^2=1$上の任意の点P$(\cos \theta,\ \sin \theta) \ (0 \leqq \theta < 2\pi)$における接線を$\ell$とする.直線$\ell$上に点Qを直線AQと$\ell$が直交するようにとる.ただし,直線$\ell$が点Aを通るときは,点Qは点Aであるとする.このとき,次の各問に答えよ.

(1)点Qの座標を,$\theta$を用いて表せ.
(2)線分PQを,点Pが原点Oに一致するように平行移動したとき,点Qが移動した点をR$(\theta)$とする.ただし,点Pと点Qが一致するときは,点R$(\theta)$は原点とする.このとき,点R$(\theta)$の軌跡は円になることを示し,その中心の座標と半径を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2011年 第3問
Oを原点とする座標平面上に,方程式$x^2+4y^2=4$で表される楕円$E$がある.楕円$E$の外部の点P$(p,\ q)$から$E$に引いた2本の接線を$\ell_1,\ \ell_2$とする.

(1)$p \neq \pm 2$のとき,$\ell_1,\ \ell_2$の傾きをそれぞれ$k_1,\ k_2$とする.$k_1,\ k_2$の和と積を$p,\ q$を用いて表せ.
(2)$\ell_1$と$\ell_2$が垂直となるような点Pの軌跡を求めよ.
(3)長方形ABCDの各辺が楕円$E$に接するとき,OAとABのなす角を$\theta$とする.長方形ABCDの面積を$\theta$を用いて表せ.
(4)(3)の長方形ABCDの面積の最大値と最小値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2011年 第2問
次の各問に解答しなさい.

(1)円$x^2+y^2=4$と放物線$\displaystyle y=-\frac{1}{2}(2+\sqrt{2})x^2+2$との共有点の個数とすべての共有点の座標を求めなさい.
(2)連立不等式
\[ \left\{
\begin{array}{l}
x^2+y^2 \leqq 4 \\
(2+\sqrt{2})x^2+2y \geqq 4
\end{array}
\right. \]
の表す領域$R$を図示し,領域$R$の面積を求めなさい.
(3)$x^2+y^2 \leqq 4$のとき,$(2+\sqrt{2})x^2+2y$の最大値と最小値を求めなさい.
高知大学 国立 高知大学 2011年 第3問
方程式$x^2+y^2-2x+6y-6=0$で表される図形を$C$とする.このとき,次の問いに答えよ.

(1)図形$C$を図示せよ.
(2)直線$2x+3y=k$が,図形$C$を2等分するような定数$k$の値を求めよ.
(3)図形$C$と直線$2x+3y=k$が異なる共有点を2個もつような定数$k$の値の範囲を求めよ.
(4)図形$C$に接し,傾きが$\displaystyle -\frac{2}{3}$である直線の方程式を求めよ.
京都教育大学 国立 京都教育大学 2011年 第4問
$x,\ y$は実数とする.$x^2+y^2-1<0$ならば$x^2-2x+y^2<3$であることを示せ.
京都教育大学 国立 京都教育大学 2011年 第6問
$-1 \leqq a \leqq 1$として,次の問に答えよ.

(1)直線$y=a$と半円$x^2+y^2=1 \ (x \geqq 0)$が,ただ1つの点を共有することを示せ.
(2)方程式$\sin x=a$は閉区間$\displaystyle \left[ -\frac{\pi}{2},\ \frac{\pi}{2} \right]$の範囲でただ1つの実数解をもつことを示せ.
(3)$-1 \leqq x \leqq 1$とする.次の条件
\[ x=\sin y,\quad -\frac{\pi}{2} \leqq y \leqq \frac{\pi}{2} \]
をみたす$y$を$g(x)$とおく.曲線$y=g(x) \ (-1 \leqq x \leqq 1)$の概形をかけ.
(4)曲線$y=g(x)$と2直線$\displaystyle x=\frac{1}{2},\ y=0$で囲まれる図形の面積を求めよ.ただし,$g(x)$は(3)で定義されたものとする.
福井大学 国立 福井大学 2011年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \ (a>b>0)$上に2点$\mathrm{P}(0,\ -b)$,$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$である.$\mathrm{Q}$における$C$の接線を$\ell$とし,$\mathrm{P}$を通り$\ell$に平行な直線と$C$との交点のうち$\mathrm{P}$と異なるものを$\mathrm{R}$とおく.このとき以下の問いに答えよ.

(1)$\mathrm{R}$の座標を求めよ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$\triangle \mathrm{PQR}$の面積の最大値とそのときの$\mathrm{Q}$の座標を求めよ.
(3)$C$の焦点のうち$x$座標が正のものを$\mathrm{F}$とする.(2)で求めた$\mathrm{Q}$の$x$座標と$\mathrm{F}$の$x$座標の大小を比較せよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。