タグ「y^2」の検索結果

46ページ目:全631問中451問~460問を表示)
大阪歯科大学 私立 大阪歯科大学 2012年 第4問
次の問に答えよ.

(1)$xy$平面上の円$x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\mathrm{A}(-1,\ 0)$を考える.ただし,$-\pi<\theta<\pi$とする.直線$\mathrm{AP}$の傾きを$t$としたとき,$\cos \theta$と$\sin \theta$を$t$を用いて表せ.
(2)$-\pi<\theta \leqq \pi$とする.$\theta$の関数$\displaystyle f(\theta)=\frac{1+\cos \theta}{3 \cos \theta-2 \sin \theta+5}$の最大値と最小値,またそのときの$\theta$の値を求めよ.
大同大学 私立 大同大学 2012年 第2問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)円$c_1:x^2+y^2-8x+6y-72=0$の中心を$\mathrm{A}(a,\ b)$,半径を$r$とするとき,$a=[ ]$,$b=-[ ]$,$r=\sqrt{[][]}$である.
円$c_2:x^2+y^2-2x+4y-35=0$の中心を$\mathrm{B}$とするとき,$\mathrm{AB}=\sqrt{[][]}$であり,円$c_1$が円$c_2$の接線から切りとる弦の長さの最大値は$[ ] \sqrt{[][]}$である.

(2)$\displaystyle 0<\beta<\alpha<\frac{\pi}{2}$,$\displaystyle \cos (\alpha+\beta)=\frac{1}{6}$,$\displaystyle \cos \alpha \cos \beta=\frac{3}{8}$のとき,

$\displaystyle \sin \alpha \sin \beta=\frac{[ ]}{[][]}$,$\displaystyle \cos (\alpha-\beta)=\frac{[ ]}{[][]}$,

$\displaystyle \cos 2\alpha=\frac{[ ]-[ ] \sqrt{[][][]}}{72}$である.
東京理科大学 私立 東京理科大学 2012年 第2問
以下の問いに答えなさい.

(1)関数$y=x^{\sqrt{x}}$(ただし,$x>0$)について,導関数$y^\prime$を求め,$y^\prime=0$となる$x$の値を求めなさい.
(2)連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
\displaystyle\frac{1}{4}x^2 \leqq y \leqq \displaystyle\frac{1}{2}x^2 \\
\displaystyle\frac{1}{4}y^2 \leqq x \leqq \displaystyle\frac{1}{2}y^2 \\
x>0 \\
y>0
\end{array} \right. \]
\setstretch{1.4}
で表される領域の面積を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$の外部の点$\mathrm{A}$からこの円に$2$本の接線を引き,その接点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,$\mathrm{M}$の座標を$(s,\ t)$とする.

(1)点$\mathrm{A}$の座標が$(a,\ b)$であるとき,$a,\ b$を用いて,点$\mathrm{M}$の座標$(s,\ t)$を表しなさい.
(2)点$\mathrm{A}$が直線$2x+3y=12$上を動くとき,点$\mathrm{M}$の軌跡を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の問の$[$64$]$~$[$73$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$xy$平面上に原点$\mathrm{O}(0,\ 0)$を中心とする円$C$と,$2$つの直線$\ell_1$,$\ell_2$がある.ただし,$a>1$とする.


円$C$ \quad\!\! :$x^2+y^2=1$
直線$\ell_1$:$\displaystyle x+\sqrt{2}y=\frac{\sqrt{3}}{a}$
直線$\ell_2$:$\displaystyle x+\sqrt{2}y=a \sqrt{3}$


円$C$と直線$\ell_1$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,それぞれの$x$座標を$x_\mathrm{A}$,$x_\mathrm{B}$とおくと,$x_\mathrm{A}<x_\mathrm{B}$である.また,直線$\ell_2$上に,$x$座標および$y$座標が共に正であるような点$\mathrm{P}$をとる.三角形$\mathrm{APB}$において,$\angle \mathrm{APB}=\theta$とすると,$\displaystyle \cos \theta=\frac{1}{a} \sqrt{a^2-1}$であり,四角形$\mathrm{OAPB}$の面積は$2 \sqrt{6}$である.

(1)線分$\mathrm{AB}$の長さは$\displaystyle \frac{[$64$] \sqrt{[$65$]}}{[$66$]}$である.

(2)$\angle \mathrm{OBP}=\frac{[$67$]}{[$68$]} \pi+\frac{[$69$]}{[$70$]} \theta$である.

(3)三角形$\mathrm{OBP}$の面積は$\displaystyle \frac{[$71$] \sqrt{[$72$]}}{[$73$]}$である.
成城大学 私立 成城大学 2012年 第2問
次の文章内の$[ア]$~$[コ]$に適当な式または数値を入れよ.ただし,$[ク]$~$[コ]$はそれぞれ$3$つの自然数の組である.

(1)$xy$平面上で,点$(-1,\ 0)$を通る傾き$t$の直線を考える.この直線が円$x^2+y^2=1$と点$(x,\ y)$(ただし,$x>0$,$y>0$)で交わるとき,$y$は$t$と$x$で,
\[ y=[ア] (ⅰ) \]
のように表される.この式を円の方程式$x^2+y^2=1$に代入して,$x$に関する$2$次方程式$[イ]=0$を得る.
この方程式を解いて,
\[ x=[ウ] (ⅱ) \]
を得る.また,式$(ⅰ)$から,
\[ y=[エ] (ⅲ) \]
となる.ただし,$t$の範囲は$0<t<[オ]$である.
(2)円$x^2+y^2=1$上の点$(x,\ y)$(ただし,$x>0$,$y>0$)の各座標がともに有理数であるとき,式$(ⅰ)$より$t$は有理数である.よって,$m,\ n$(ただし,$m>n$)を互いに素な自然数として$\displaystyle t=\frac{n}{m}$と表せば,式$(ⅱ)$,$(ⅲ)$より点$(x,\ y)$は
\[ x=\frac{[カ]}{m^2+n^2},\quad y=\frac{[キ]}{m^2+n^2} \]
と表される.
(3)等式$a^2+b^2=c^2$が成り立つような$3$つの自然数の組$(a,\ b,\ c)$(ただし,$a<b$)で,$a,\ b,\ c$の最大公約数が$1$,かつ$a<9$である組は
$(a,\ b,\ c)=(3,\ 4,\ 5),\ [ク],\ [ケ],\ [コ]$の$4$つである.
愛知学院大学 私立 愛知学院大学 2012年 第2問
図のように,円$x^2+y^2=m^2$(ただし,$m \geqq 1$)と,直線$y=x$および直線$y=-x+1$の交点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の値を$m$を用いて求めなさい.

(1)$\cos \angle \mathrm{AOB}$
(2)$\mathrm{BD}$の長さ
(3)四角形$\mathrm{ABCD}$の面積$S$
(図は省略)
首都大学東京 公立 首都大学東京 2012年 第1問
$1$個のさいころを$5$回振る試行を行うとき,以下の問いに答えなさい.

(1)$3$の倍数の目がそれ以外の目より$1$回だけ多く出る確率を求めなさい.
(2)$3$の倍数の目がそれ以外の目より$2$回以上多く出る確率を求めなさい.
(3)$3$の倍数の目が出る回数を$x$とし,それ以外の目が出る回数を$y$とする.$x^2+y^2$が最小値をとる確率を求めなさい.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
首都大学東京 公立 首都大学東京 2012年 第1問
楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>0,\ b>0)$上の点P$(x_0,\ y_0) (0 < x_0 < a,\ y_0>0)$における接線と$x$軸,$y$軸との交点をそれぞれA,Bとする.以下の問いに答えなさい.

(1)$\displaystyle \frac{\ x_0^2 \ }{a^2}=t$とおくとき,線分ABの長さ$\overline{AB}$を$a,\ b,\ t$を用いて表しなさい.
(2)$0<x_0<a$における$\overline{AB}$の最小値を求めなさい.また,そのときのPの座標を求めなさい.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。