タグ「y^2」の検索結果

45ページ目:全631問中441問~450問を表示)
関西学院大学 私立 関西学院大学 2012年 第2問
実数$x,\ y$が$x^2+y^2-4y+2=0$を満たすとする.$\displaystyle k=\frac{x}{y}$,$\displaystyle z=\frac{x^2+4xy+9y^2}{xy+2y^2}$とおくとき,次の問いに答えよ.

(1)$k$のとりうる値の範囲を求めよ.
(2)$z$を$k$の式で表せ.
(3)$z$の最小値とそのときの$k$の値を求めよ.
(4)$z$の最小値を与える$x$の値は$2$つある.それらを$\alpha,\ \beta$とするとき,$\alpha+\beta$を求めよ.
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$xy$平面における放物線
\[ y=x^2-4x+1 \]
は放物線$y=x^2$を$x$軸方向に$[ア]$,$y$軸方向に$[イ]$だけ平行移動することによって得られる.関数
\[ y=x^2-4x+1 \quad (a \leqq x \leqq a+1) \]
の最小値を$m$とおく.ただし,$a$は実数である.$a<1$の場合は$m=[ウ]$であり,$1 \leqq a \leqq 2$の場合は$m=[エ]$であり,$a>2$の場合は$m=[オ]$である.
(2)${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数を求めよう.二項定理により
\[ \begin{array}{lll}
{(2x^2-xy-3y^2)}^5 &=& \displaystyle\left\{ (2x^2-xy)-3y^2 \right\}^5 \\
&=& (2x^2-xy)^5+5(2x^2-xy)^4(-3y^2) \\
& & +[カ](2x^2-xy)^3(-3y^2)^2+10(2x^2-xy)^2(-3y^2)^3 \\
& & +5(2x^2-xy)(-3y^2)^4 +(-3y^2)^5
\end{array} \]
が成り立つ.$(2x^2-xy)^5$の展開式における$x^5y^5$の係数は$[キ]$であり,$5(2x^2-xy)^4(-3y^2)$の展開式における$x^5y^5$の係数は$[ク]$である.さらに,$[カ](2x^2-xy)^3(-3y^2)^2$の展開式における$x^5y^5$の係数は$[ケ]$である.また,$10(2x^2-xy)^2(-3y^2)^3+5(2x^2-xy)(-3y^2)^4+(-3y^2)^5$の展開式における$x^5y^5$の係数は$0$である.よって${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数は$[コ]$である.
神戸薬科大学 私立 神戸薬科大学 2012年 第4問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)関数$\displaystyle f(x)=\cos^4 x-\sin^4 x+\frac{1}{2} \sin x \sin 2x+3 \cos x (0 \leqq x \leqq \pi)$とする.$t=\cos x$とおき$f(x)$を$t$の式で表すと,$f(x)=[ ]$である.$f(x)$は$\cos x=[ ]$のとき最大値$[ ]$をとり,$\cos x=[ ]$のとき最小値$[ ]$をとる.
(2)半円$C_1:x^2+y^2=2 (y \geqq 0)$と放物線$C_2:y=ax^2+1-a (a<-1)$とで囲まれた図形の面積$S$を求めたい.

(i) $C_1$と$C_2$の交点を求めると$[ ]$である.
(ii) $C_1$と$C_2$のグラフおよび$(1)$で求めた交点を図示せよ.
(iii) 面積$S=[ ]$である.
京都女子大学 私立 京都女子大学 2012年 第1問
次の各問に答えよ.

(1)$A=2x^2-xy-3y^2+3x+8y-5$を因数分解せよ.また,$\displaystyle x=\frac{\sqrt{7}-2}{2},\ y=\frac{1}{\sqrt{7}-2}$のとき,$A$の値を求めよ.
(2)方程式$\displaystyle |-\abs{x|+4}=\frac{1}{2}x+1$の解を求めよ.
(3)$2$次関数$f(x)=ax^2+2ax+a+b$($a,\ b$は定数)が区間$-2 \leqq x \leqq 2$において最大値$4$,最小値$1$をとるように$a,\ b$の値を定めよ.
大阪学院大学 私立 大阪学院大学 2012年 第1問
$\displaystyle x=\frac{4}{\sqrt{5}-\sqrt{3}},\ y=\frac{4}{\sqrt{5}+\sqrt{3}}$のとき,次の式の値を求めなさい.

(1)$x^2+y^2$
(2)$x^2-y^2$
(3)$x^4-x^4y^2+x^2y^4-y^4$
千葉工業大学 私立 千葉工業大学 2012年 第1問
次の各問に答えよ.

(1)$\displaystyle \frac{3 \sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}=[ア]+\sqrt{[イウ]}$である.
(2)整式$x^3-4x^2+7x+1$を$x^2-3x+2$で割った余りは$[エ]x+[オ]$である.
(3)$\displaystyle 3^{2x} \leqq \frac{9}{{27}^x}$をみたす$x$の範囲は$\displaystyle x \leqq \frac{[カ]}{[キ]}$である.
(4)直線$2x+3y+5=0$と点$(-4,\ 1)$において垂直に交わる直線の方程式は$\displaystyle y=\frac{[ク]}{[ケ]}x+[コ]$である.
(5)円$x^2+y^2=9$と円$x^2+(y+a)^2=9$が共有点をもつような定数$a$の値の範囲は$[サシ] \leqq a \leqq [ス]$である.
(6)$\overrightarrow{a}=(k,\ -2k,\ 5)$が$\overrightarrow{b}=(1,\ -2,\ -2)$に垂直であるとき,$k=[セ]$であり,$|\overrightarrow{a}|=[ソ] \sqrt{[タ]}$である.
(7)$1$個のサイコロを振り,出た目を$4$で割った余りを$X$とする.$X=1$となる確率は$\displaystyle \frac{[チ]}{[ツ]}$であり,また,$X$の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
(8)関数$\displaystyle f(x)=\frac{1}{3}x^3-ax^2+3x+1$($a$は定数)が$x=3$で極値をとるとき,$a=[ナ]$であり,極大値は$\displaystyle \frac{[ニ]}{[ヌ]}$である.
大阪薬科大学 私立 大阪薬科大学 2012年 第1問
次の問いに答えなさい.

(1)自然数$m,\ n$に対し,命題「$m^2+n^2$が偶数ならば,$m+n$は偶数である」が真ならば「真」と,偽ならば反例を$[$\mathrm{A]$}$に記入しなさい.
(2)$2^x=5^y=100$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}=[$\mathrm{B]$}$となる.
(3)$xy$座標平面において,円$x^2+y^2=3$と直線$x+y=1$の$2$つの交点を結ぶ線分の長さは,$[$\mathrm{C]$}$である.
(4)数直線上を動く点$\mathrm{P}$が原点$\mathrm{O}$にある.表と裏が等しい確率で出るコインを投げ,表が出ると正方向に$1$だけ進み,裏が出ると負方向に$1$だけ進むことを繰り返す.コインを$10$回投げるとき,$\mathrm{P}$の座標が$-6$となる確率は,$[$\mathrm{D]$}$である.
(5)方程式$x^3-3x^2-9x-a=0$が異なる$3$つの実数解を持つとき,定数$a$が満たさなければならない条件を$[あ]$で求めなさい.
吉備国際大学 私立 吉備国際大学 2012年 第1問
次の( \quad )を埋めよ.

(1)$x^4-3x^2y^2+y^4$を因数分解すると$( ① )$となる.
(2)$1$個のサイコロを$5$回投げるとき,素数の目がちょうど$4$回出る確率は$( ② )$である.
(3)$x$の$2$次方程式$(a-3)x^2+2(a+3)x+a+5=0$が実数解をもつとき,定数$a$の値の範囲は$( ③ )$である.
(4)$360$の正の約数の個数は$( ④ )$,その総和は$( ⑤ )$.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
大阪歯科大学 私立 大阪歯科大学 2012年 第3問
$xy$平面において,不等式$x^2+y^2 \leqq 1$の表す領域を$D_1$とし,整数$k$に対して連立不等式
\[ \left\{ \begin{array}{l}
y \leqq 2x+k+2 \\
y \geqq 2x+k-5
\end{array} \right. \]
の表す領域を$D_2$とする.

(1)円$x^2+y^2=1$の接線で,傾きが$2$のものをすべて求めよ.
(2)領域$D_1$が領域$D_2$に含まれるような$k$をすべて求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。