タグ「y^2」の検索結果

43ページ目:全631問中421問~430問を表示)
自治医科大学 私立 自治医科大学 2012年 第16問
円$C:x^2+y^2+2x-6y+k=0$について考える.原点$\mathrm{O}$から$C$に引いた$2$本の接線が直交するとき,$k$の値を求めよ.
自治医科大学 私立 自治医科大学 2012年 第17問
直線:$2x-y+3=0$と円:$x^2+y^2+10x-2y+10=0$との相異なる$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とする.線分$\mathrm{AB}$の長さを$a$とするとき,$\sqrt{5}a$の値を求めよ.
東北学院大学 私立 東北学院大学 2012年 第4問
円$\mathrm{O}:x^2+y^2=25$の上の$2$点$\mathrm{A}(5,\ 0)$,$\mathrm{B}(-3,\ 4)$をとる.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1:t (t>0)$に外分する点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標を$t$を用いて表せ.
(2)点$\mathrm{B}$における円$\mathrm{O}$の接線と点$\mathrm{C}$との距離が$12$であるとき,$t$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)多項式$P(x)$を$x^3+1$で割ったときの余りが$2x^2+13x$であった.このとき,$P(x)$を$x+1$で割ったときの余りは$[カ]$である.また,$P(x)$を$x^2-x+1$で割ったときの余りは$[キ]$である.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=n^3+2012 \]
で与えられるとする.この数列$\{a_n\}$の初項$a_1$は$a_1=[ク]$である.また,$2$以上の自然数$n$に対して,$a_n$を$n$を用いて表すと$a_n=[ケ]$となる.
(3)$a>1$とし,三角形$\mathrm{ABC}$で$\mathrm{AB}=2$,$\mathrm{BC}=a$,$\angle \mathrm{A}=30^\circ$であるようなものについて考える.このとき$k=[コ]$として,$1<a<k$の場合はこのような三角形は$2$つ存在するが,$a \geqq k$の場合はこのような三角形は$1$つしか存在しない.また$a \geqq k$の場合,$\mathrm{AC}$の長さを$a$を用いて表すと$\mathrm{AC}=[サ]$となる.
(4)$3$個のさいころを同時に投げるとき,出る目の数の積が$3$の倍数になる確率は$[シ]$であり,出る目の数の積が$15$の倍数になる確率は$[ス]$である.
(5)実数$x,\ y$が$2$つの不等式
\[ x^2+y^2 \leqq 25,\quad x-2y \geqq 5 \]
を同時に満たすとき,$y-2x$の最大値は$[セ]$であり,最小値は$[ソ]$である.
龍谷大学 私立 龍谷大学 2012年 第1問
つぎの連立不等式の表す領域を$D$とする.
\[ x^2+y^2-1 \leqq 0,\quad 5x+5y+1 \geqq 0 \]
つぎの問いに答えなさい.

(1)領域$D$を図示しなさい.
(2)点$\mathrm{P}(x,\ y)$が,この領域$D$内を動くとき,$x+\sqrt{3}y$の最大値および最小値を求めなさい.
中央大学 私立 中央大学 2012年 第2問
座標平面上に円$(x+4)^2+y^2=16$と点$\mathrm{P}(4,\ 0)$がある.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$を通る直線$y=mx+n$が円と$2$個の共有点を持つように定数$m$の値の範囲を定めよ.
(2)円周上を動く点$\mathrm{Q}$がある.線分$\mathrm{PQ}$を$3:2$に内分する点の軌跡を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
西南学院大学 私立 西南学院大学 2012年 第3問
原点を$\mathrm{O}$とし,下図のように$3$つの円$C_1$,$C_2$,$C_3$が互いに接している.$C_2$の中心を$\mathrm{O}_2$,$C_1$と$C_2$の接点を$\mathrm{P}$,$C_2$と$C_3$の接点を$\mathrm{Q}$,$C_3$と$C_1$の接点を$\mathrm{R}$とする.$C_1$と$C_2$の方程式が
\[ C_1:x^2+y^2=\left( \frac{\sqrt{3}-1}{2} \right)^2,\quad C_2:x^2+(y-\sqrt{3})^2=\left( \frac{\sqrt{3}+1}{2} \right)^2 \]
であるとき,以下の問に答えよ.
(図は省略)

(1)$\displaystyle C_3:(x-[シ])^2+y^2=\left( \frac{[ス]-\sqrt{[セ]}}{[ソ]} \right)^2$である.
(2)弧$\mathrm{RP}$は円$C_1$の短い方の弧を指すものとし,他の弧についても同様とする.また扇形$\mathrm{RPO}$とは弧$\mathrm{RP}$を含む扇形とする.このとき,扇形$\mathrm{PQO}_2$の面積は
\[ \frac{[タ]+\sqrt{[チ]}}{[ツテ]}\pi \]
であることより,$3$つの弧$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$で囲まれる図形(図の斜線部)の面積は
\[ \frac{\sqrt{[ト]}}{[ナ]}-\frac{[ニ]-[ヌ] \sqrt{[ネ]}}{[ノ]} \pi \]
である.
広島修道大学 私立 広島修道大学 2012年 第3問
$r$を正の定数とするとき,次の各問に答えよ.

(1)直線$x+y=3$と円$x^2+y^2=r^2$が共有点をもつような$r$の範囲を求めよ.
(2)直線$x+y=3$と円$x^2+y^2=r^2$が共有点$\mathrm{A}$,$\mathrm{B}$をもち,$\mathrm{AB}=1$となる$r$の値を求めよ.
(3)実数$x,\ y$が不等式$x+y \geqq 3$を満たすとき,$x^2+y^2+2x+2y$の最小値を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。