タグ「y^2」の検索結果

30ページ目:全631問中291問~300問を表示)
宇都宮大学 国立 宇都宮大学 2013年 第5問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の半円$C:x^2+y^2=1 \ (y>0)$上の点を$\mathrm{P}$とする.$a>1$に対して$x$軸上の定点を$\mathrm{A}(a,\ 0)$とし,直線$\mathrm{AP}$と$y$軸の交点を$\mathrm{Q}$,$\mathrm{Q}$を通り$x$軸に平行な直線と直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OP}$が$x$軸の正の方向となす角を$\theta$,$\mathrm{OR}=r$とするとき,直線$\mathrm{AQ}$の方程式を$a,\ \theta,\ r$を用いて表せ.
(2)点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{R}$のえがく曲線の方程式を求めよ.
(3)(2)で得られた曲線の$a=\sqrt{2}$であるときの概形をかけ.
大分大学 国立 大分大学 2013年 第2問
連立不等式$\left\{ \begin{array}{l}
y \geqq |2x-3| \\
y \leqq x
\end{array} \right.$の表す領域を$D$とする.

(1)領域$D$を図示しなさい.
(2)$a$を$2$でない正の定数とする.点$(x,\ y)$が領域$D$内を動くとき,$ax+y$の最大値と最小値,およびそのときの点$(x,\ y)$を求めなさい.
(3)点$(x,\ y)$が領域$D$内を動くとき,$x^2+y^2$の最小値とそのときの点$(x,\ y)$を求めなさい.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の円$x^2+y^2-10x-10y+49=0$を$C$とする.原点$\mathrm{O}$を通り,円$C$に接する直線のうち,傾きの大きい方を$\ell$とする.

(1)$\ell$の傾きを求めよ.
(2)$x$軸に接し,円$C$と外接するような円の中心$\mathrm{P}$の描く軌跡を求めよ.
(3)直線$\ell$と$x$軸に接し,さらに円$C$と外接する円の半径をすべて求めよ.
東京農工大学 国立 東京農工大学 2013年 第2問
$xyz$空間に点$\mathrm{P}(0,\ 0,\ 5)$がある.次の問いに答えよ.

(1)球面$x^2+y^2+(z-2)^2=9$と平面$\displaystyle x=\frac{1}{2}$が交わってできる円を$C$とする.$C$の中心の座標と半径を求めよ.
(2)$C$上に点$\displaystyle \mathrm{Q} \left( \frac{1}{2},\ s,\ t \right)$をとったとき,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線と$xy$平面との交点を$\mathrm{R}(X,\ Y,\ 0)$とする.$X,\ Y$それぞれを$s,\ t$の式で表せ.
(3)$\mathrm{Q}$が$C$上のすべての点を動くとき,$\mathrm{R}$が描く曲線を$C^\prime$とする.$C^\prime$の長さ$L$を求めよ.
三重大学 国立 三重大学 2013年 第4問
$y^2=(x-2)^2(x+1)$で決まる曲線を$C$とする.以下の問いに答えよ.

(1)関数$y=(x-2) \sqrt{x+1}$の増減を調べ,関数のグラフの概形をかけ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$で囲まれる部分の面積を求めよ.
群馬大学 国立 群馬大学 2013年 第9問
次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
x^2-2y=8 \\
y^2-2x=8
\end{array} \right. \]
福井大学 国立 福井大学 2013年 第4問
双曲線$\displaystyle C:\frac{x^2}{16}-\frac{y^2}{9}=1$上に点$\displaystyle \mathrm{A} \left( \frac{4}{\cos \theta},\ 3 \tan \theta \right)$,$\mathrm{B}(4,\ 0)$をとる.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$における$C$の接線と$\mathrm{B}$における$C$の接線との交点を$\mathrm{D}$とし,$C$の焦点のうち$x$座標が正であるものを$\mathrm{F}$とおく.このとき,以下の問いに答えよ.

(1)$\mathrm{D}$の座標を求めよ.
(2)$\displaystyle \tan \frac{\theta}{2}=m$とおく.$\tan \angle \mathrm{DFB}$を$m$を用いて表せ.
(3)直線$\mathrm{DF}$は$\angle \mathrm{AFB}$を$2$等分することを証明せよ.
山形大学 国立 山形大学 2013年 第2問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第1問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。