タグ「y^2」の検索結果

26ページ目:全631問中251問~260問を表示)
東京都市大学 私立 東京都市大学 2014年 第2問
次の問に答えよ.

(1)不等式$x^2+y^2-6x-4y \leqq -9$を満たす点$(x,\ y)$全体の集合を$xy$平面上に図示せよ.
(2)関数$y=e^x-e^{-x}$のグラフに接する,傾きが$4$である接線の方程式を求めよ.
(3)定積分$\displaystyle \int_{e^{-1}}^e |\log x| \, dx$の値を求めよ.ただし,$\log$は自然対数である.
東京都市大学 私立 東京都市大学 2014年 第3問
次の問に答えよ.

(1)点$(-p,\ 0)$(ただし,$p>0$)から放物線$y^2=4x$に引いた,傾きが負の接線の方程式を求めよ.
(2)$(1)$で求めた接線と,$x$軸および放物線$y^2=4x$で囲まれる図形の面積が$\displaystyle \frac{16}{3}$となるときの$p$の値を求めよ.
東京都市大学 私立 東京都市大学 2014年 第4問
楕円$x^2+3y^2=2$を$C_1$とし,円$x^2+y^2=1$を$C_2$とする.このとき,次の問に答えよ.

(1)$C_1$を図示せよ.
(2)$C_1$と$C_2$との$4$つの交点の座標は,$(p,\ q)$,$(-p,\ q)$,$(-p,\ -q)$,$(p,\ -q)$と表される.$p,\ q$を求めよ.ただし,$p>0$,$q>0$とする.
(3)楕円$C_1$で囲まれた図形のうち,$0 \leqq x \leqq p$となる部分の面積を求めよ.ただし,$p$は$(2)$で求めたものとする.
西南学院大学 私立 西南学院大学 2014年 第3問
点$\mathrm{P}$の座標$(x,\ y)$が,$x^2+y^2=1$,$x \geqq 0$,$y \geqq 0$を満たすものとする.原点を$\mathrm{O}$とし,$\mathrm{OP}$と$x$軸のなす角を$\theta$とする.このとき,以下の問に答えよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{[ス]}{[セ]} \pi$である.

(2)$x=\cos \theta,\ y=\sin \theta$とおくと,
\[ x^2-y^2+2 \sqrt{3} xy=[ソ] \sin \left( [タ] \theta+\frac{\pi}{[チ]} \right) \]
である.
(3)$x^2-y^2+2 \sqrt{3}xy$の最大値は,$\displaystyle x=\frac{\sqrt{[ツ]}}{[テ]}$のとき$[ト]$である.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$x+y=1$のとき$x^2+y^2$の最小値を求めなさい.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(5)円$x^2+y^2=2$と直線$y=x-1$の$2$つの交点を結ぶ線分の長さを求めなさい.
(6)$x^4-4$を複素数の範囲で因数分解しなさい.
東京都市大学 私立 東京都市大学 2014年 第2問
$f(x)=x^2-4$,$g(x)=x(x^2-1)$とし,次の連立不等式の表す領域を$D$とする.
\[ \left\{ \begin{array}{l}
y \leqq \displaystyle\frac{1}{2}x^2 \\
x^2+y^2 \leqq 8 \phantom{\frac{[ ]}{2}} \\
f(x)g(x) \geqq 0 \phantom{\frac{[ ]}{2}}
\end{array} \right. \]

(1)$f(x) \geqq 0$を満たす$x$の範囲を求めよ.
(2)$g(x) \geqq 0$を満たす$x$の範囲を求めよ.
(3)$f(x)g(x) \geqq 0$を満たす$x$の範囲を求めよ.
(4)$xy$平面上に領域$D$を図示せよ.
(5)領域$D$の面積を求めよ.
(6)点$\mathrm{P}(x,\ y)$が領域$D$を動くとき,$2x+y$の最大値と最小値を求めよ.最大値と最小値をとるときの点$\mathrm{P}$の座標も答えること.
北海道医療大学 私立 北海道医療大学 2014年 第2問
以下の問に答えよ.

(1)座標平面上の点と方程式に関する以下の問に答えよ.

\mon[$①$] 点$(2,\ 3)$を通る傾き$m$の直線の方程式を求めよ.
\mon[$②$] 点$(2,\ 3)$から円$x^2+y^2=1$に引いた接線の傾きを求めよ.
\mon[$③$] 条件$x^2+y^2=1,\ y-x \geqq -1$を同時に満たす点$(x,\ y)$について$\displaystyle \frac{y-3}{x-2}=k$とおくとき,$k$の最大値を求めよ.

(2)三角関数に関する以下の問に答えよ.ただし$0 \leqq \theta<2\pi$とする.

\mon[$①$] $\sin \theta-\cos \theta$の最大値と最小値を求めよ.
\mon[$②$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$の範囲を求めよ.
\mon[$③$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$に対する$\displaystyle \frac{\sin \theta-3}{\cos \theta-2}$の最大値と最小値を求めよ.
愛知学院大学 私立 愛知学院大学 2014年 第2問
円$C:x^2+y^2-6x-4y=19$と直線$\ell:x+y=k$について次の問いに答えなさい.

(1)$C$の半径を求めなさい.
(2)$\ell$が$C$の囲む面積を$2$等分するような$k$の値を求めなさい.
(3)$\ell$が$C$と共有点をもつような$k$の範囲を求めなさい.
(4)$\ell$が$C$と異なる$2$つの共有点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$\mathrm{PQ}$の長さが$8$となるような$k$の値を求めなさい.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2014年 第1問
次の設問に答えなさい.

(1)$x=2+\sqrt{2}$,$y=2-\sqrt{2}$のとき$\displaystyle \frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$の値を求めなさい.

(2)$(a+bx+cx^2)^3$の展開式において$x^4$の係数を求めなさい.
(3)$x^2-y^2+3x+y+2$を因数分解しなさい.
(4)$x,\ y$を自然数とするとき,$x^2-y^2+3x+y+2=4$を満たす$x,\ y$を求めなさい.
大阪市立大学 公立 大阪市立大学 2014年 第2問
$a>0$,$b>0$とし,座標平面上の楕円$\displaystyle K:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の$2$点
\[ \mathrm{A}(a \cos \theta,\ b \sin \theta),\qquad \mathrm{B} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ b \sin \left( \theta+\frac{\pi}{2} \right) \right) \]
のそれぞれにおける$K$の接線を$\ell$,$m$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.$2$直線$\ell$と$m$の交点を$\mathrm{C}(c,\ d)$とし,さらに$2$点$\displaystyle \mathrm{D} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ 0 \right)$,$\mathrm{E}(c,\ 0)$をとる.台形$\mathrm{CBDE}$の面積を$S$とする.次の問いに答えよ.

(1)$c$および$d$を$a,\ b,\ \theta$を用いて表せ.
(2)$S$を$a,\ b,\ \theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$の範囲を動くときの$S$の最大値,および,$S$が最大値をとるときの$m$の傾きを$a,\ b$を用いて表せ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。