タグ「y^2」の検索結果

24ページ目:全631問中231問~240問を表示)
早稲田大学 私立 早稲田大学 2014年 第4問
$x,\ y$を自然数,$p$を$3$以上の素数とするとき,次の各問に答えよ.ただし,$(1)$,$(3)$は答のみ解答欄に記入せよ.

(1)$x^2-y^2=p$が成り立つとき,$x,\ y$を$p$で表せ.
(2)$x^3-y^3=p$が成り立つとき,$p$を$6$で割った余りが$1$となることを証明せよ.
(3)$x^3-y^3=p$が自然数の解の組$(x,\ y)$をもつような$p$を,小さい数から順に$p_1$,$p_2$,$p_3$,$\cdots$とするとき,$p_5$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第4問
不等式
\[ \left\{ \begin{array}{l}
\displaystyle\frac{x^2}{4}-\frac{y^2}{9} \geqq 1 \\
-3 \leqq x \leqq 3 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
の表す領域を$x$軸のまわりに$1$回転してできる回転体の体積は$\displaystyle \frac{[サ]}{[シ]} \pi$である.
神奈川大学 私立 神奈川大学 2014年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)$2$次方程式$x^2-2x+2=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\beta}{\alpha}+\frac{\alpha}{\beta}$の値は$[$(\mathrm{a])$}$である.
(2)$\overrightarrow{\mathrm{0}}$でない$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は,なす角が${60}^\circ$で,$|\overrightarrow{a}|=2 |\overrightarrow{b}|$である.$\overrightarrow{a}+\overrightarrow{b}$と$2 \overrightarrow{a}+t \overrightarrow{b}$が垂直であるとき,$t$の値は$[$(\mathrm{b])$}$である.
(3)$a^x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle \frac{a^{3x}-a^{-3x}}{a^x-a^{-x}}$の値は$[$(\mathrm{c])$}$である.
(4)円$x^2+y^2-2x-4y-4=0$上の点$\mathrm{A}$と,円$x^2+y^2-12x-14y+81=0$上の点$\mathrm{B}$について,$\mathrm{A}$と$\mathrm{B}$の距離の最小値は$[$(\mathrm{d])$}$である.
(5)$6$枚のコインを同時に投げるとき,ちょうど$3$枚のコインが表になる確率は$[$(\mathrm{e])$}$である.
(6)定数$a,\ b$に対して,$\displaystyle \lim_{x \to a} \frac{x^2-b}{x-a}=6$が成り立つとする.このとき,$a=[($\mathrm{f])$}$,$b=[$(\mathrm{g])$}$である.
大同大学 私立 大同大学 2014年 第2問
次の$[ノ]$から$[レ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$\mathrm{A}(-1,\ -2)$,$\mathrm{B}(3,\ 4)$とする.$\triangle \mathrm{ABC}$が$\angle \mathrm{C}={90}^\circ$の直角三角形のとき,点$\mathrm{C}$は円$x^2+y^2-[ノ]x-[ハ]y-[ヒ][フ]=0$上にある.さらに$\triangle \mathrm{ABC}$の面積が最大となる点$\mathrm{C}$の座標は$([ヘ],\ -[ホ])$または$(-[マ],\ [ミ])$である.
(2)$\sin x=t$とおくとき,$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=[ム] t^3-[メ] t-[モ]=(t-[ヤ])([ユ] t^2+[ヨ] t+[ラ])$である.
$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=0$のとき,$\displaystyle \sin x=\frac{-[リ]+\sqrt{[ル]}}{[レ]}$である.
吉備国際大学 私立 吉備国際大学 2014年 第3問
$-2 \leqq t \leqq 2$のとき$x=t^2+t=f(t)$とする.

(1)$x$の値域を求めよ.
(2)$y=g(x)=-x^2+3x+1$の値域を求めよ.
(3)$\displaystyle z=h(y)=\frac{1}{2}y^2-4y$の値域を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2014年 第3問
曲線$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$と,正の定数$m$がある.このとき,以下の問いに答えなさい.

(1)傾きが$m$となる$C$の接線を$2$本求めなさい.
(2)直線$y=mx$と$C$の交点の座標を$\mathrm{P}$および$\mathrm{Q}$とするとき,$\mathrm{P}$,$\mathrm{Q}$それぞれの座標を求めなさい.ただし,$\mathrm{P}$の$x$座標は正の値とする.
(3)$(1)$で求めた$2$本の接線および,$(2)$の点$\mathrm{P}$,$\mathrm{Q}$それぞれにおける$C$の接線とで囲まれた図形の面積を求めなさい.
久留米大学 私立 久留米大学 2014年 第6問
点$(p,\ 0)$を通り,楕円$4x^2+y^2=4$に接する直線の方程式は$y=[$15$]$および$y=[$16$]$で,接点の$x$座標は$x=[$17$]$である.また,$p=[$18$]$のとき,$2$つの接線は直交する.ここで,$p$は実数で$p>2$とする.
安田女子大学 私立 安田女子大学 2014年 第1問
次の問いに答えよ.

(1)$3x(3x+1)=6 \times 7$であるとき,$x$の値を求めよ.
(2)$\displaystyle \frac{1}{\sqrt{3}-2}-\frac{2}{\sqrt{3}+2}$を計算せよ.
(3)$3 \, \%$の食塩水$100 \, \mathrm{g}$を$2 \, \%$の食塩水にするには,水を何$\mathrm{g}$加えれば良いか答えよ.
(4)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
x+2y=4 \\
x^2+xy+y^2=7
\end{array} \right. \]
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の問いに答えなさい.

(1)下図のような口の半径が$10 \, \mathrm{cm}$,高さが$30 \, \mathrm{cm}$の口の開いた逆円すい形の容器を,口が水平になるように置き,水を入れた.水面の面積が$36 \pi \, \mathrm{cm}^2$であるとき,水の体積は$[$1$][$2$][$3$] \pi \, \mathrm{cm}^3$であり,容器の内面で水に接していない部分の面積は,水に接している部分の面積の$\displaystyle \frac{[$4$][$5$]}{[$6$]}$倍である.
(図は省略)
(2)次の数列を考える.
\[ 1,\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{3},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{9},\ \frac{1}{27},\ \cdots \]
この数列の第$670$項は$\displaystyle \frac{1}{[$7$][$8$][$9$]}$,初項から第$2182$項までの和は
\[ \frac{\kakkofour{$10$}{$11$}{$12$}{$13$}}{[$14$][$15$][$16$]} \]
である.
(3)次の連立方程式を満たす実数の組$(x,\ y)$をすべて求めなさい.
\[ \left\{ \begin{array}{l}
-9x^2+4x+3y^2=0 \\
3xy-5y=0
\end{array} \right. \]
同志社大学 私立 同志社大学 2014年 第2問
座標空間内の球面$x^2+y^2+z^2=9$上に$3$点$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 2)$,$\mathrm{C}(1,\ -2,\ 2)$をとる.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に,原点$\mathrm{O}$から下ろした垂線の足$\mathrm{H}$の座標を求めよ.
(3)球面上を動く点$\mathrm{P}$を頂点とする四面体$\mathrm{PABC}$を考え,その体積を$V$とする.$V$の最大値と,そのときの点$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。